The (NTp) ensemble

\vspace{15mm} \noindent The phase-points are $(\vec{r},\vec{p},V)$. \begin{eqnarray} \sum \theta_i & = & 1 \nonumber\\ \sum H_i \theta_i & = & \langle E \rangle\nonumber\\ \sum V_i \theta_i & = & \langle V \rangle \nonumber \end{eqnarray} The entropy is maximized: \begin{displaymath} \ln( \theta ) = 1 + \alpha + \beta E + \gamma V =0 \end{displaymath} where $\alpha, \beta$, and $\gamma$ are Lagrange multipliers. \noindent By standard arguments \begin{eqnarray} Q & = & e^{1+\alpha} \nonumber\\ \beta & = & \frac{1}{k_{B}T} \nonumber\\ \gamma & = & \frac{p}{k_{B}T} \nonumber \end{eqnarray} \noindent The partition function is \begin{displaymath} Q(N,T,p) = \sum \exp(-\frac{pV+H_i}{k_BT}) \end{displaymath} By differentiation of \begin{displaymath} Q = \sum H_i \exp(-\frac{H- pV}{k_BT}) \end{displaymath} by T: \begin{displaymath} -^2 = k_{B}T^{2}C^{'}_{p} + pV\beta \end{displaymath} where $C^{'}_{p}$ is the heat capacity caused by the {\em potential} energy and $\beta$ is the thermal expansion \noindent By differentiation of \begin{displaymath} Q \langle V \rangle = \sum V^{N+1} \sum \exp( -\frac{H_i - pV_i}{k_BT} ) \end{displaymath} by V \begin{displaymath} \langle V^2 \rangle - \langle V \rangle^2 = \langle V \rangle \kappa k_B T \end{displaymath} where $\kappa$ is the isothermal compressibility


Back

Author Per Stoltze stoltze@fysik.dtu.dk