Programmable oxide heterostructures.
Ho Nyung
Lee
Epitaxy of
complex-oxide thin films and heterostructures provides an immense challenge to
design novel materials system, which enables us to explore previously
unavailable phase space regions. We have established a growth technique to
control complex oxides at the level of unit cell thickness by pulsed laser
epitaxy. The atomic-scale growth control enables to assemble
the building blocks to a functional system in a programmable manner, yielding
many intriguing physical properties that cannot be found in bulk counterparts. In
this talk, examples of artificially designed, programmable complex oxide
heterostructures will be presented, highlighting the importance of interfacial
coupling of energy quanta across and along the atomically well-defined
interface. The main topics includes(1) fast, reversible redox reactions in
epitaxial ‘oxygen sponges’ for oxide catalysts and energy storage1,2,
(2) ferroelectric modulation of interfacial phases of correlated oxides3,4,
and (3) strain control of ferroic properties, ionic conduction, and
electrochemical behaviors in perovskite oxides5-9.
References:
(1)
H. Jeen, W. S.
Choi, M. D. Biegalski, I. C. Tung, J. W. Freeland, D. Shin, H. Ohta, M. F.
Chisholm, and H. N. Lee, Reversible
redox reactions in an epitaxially stabilized SrCoOx oxygen sponge, Nature Mater. 12, 1057 (2013).
(2)
W. S. Choi, H.
Jeen, J. H. Lee, S. S. A. Seo, V. R. Cooper, K. M. Rabe, and H. N. Lee,
Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical
spectroscopy and first-principles calculations, Phys. Rev. Lett. 111,
097401 (2013).
(3)
L. Jiang, W. S. Choi, H. Jeen, S.
Dong, Y. S. Kim, S. V. Kalinin, E. Dagotto, T.
Egami, and H. N. Lee, Tunneling electroresistance
induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett. 13, 5837 (2013).
(4) M. F. Chisholm, W. Luo, M. P. Oxley,
S. Pantelides, and H. N. Lee, Atomic-scale compensation phenomena at polar
interfaces, Phys. Rev. Lett. 105, 197602 (2010).
(5)
H. Jeen, W. S.
Choi, J. W. Freeland, H. Ohta, C. U. Jung, and H. N. Lee, Topotactic phase
transformation of the brown millerite SrCoO2.5 to the perovskite
SrCoO3-δ, Adv. Mater.
25, 3651 (2013).
(6)
W.
S. Choi, S. Lee, V. Cooper, and H. N. Lee, Fractionally δ-doped oxide superlattices for higher carrier mobilities, Nano Lett.12, 4590 (2012).
(7)
H. Jeen, Z. Bi,
W. S. Choi, C. A. Bridges, M. P. Paranthaman, and H. N. Lee, Orienting oxygen
vacancies for fast catalytic reaction, Adv.
Mater.25, 6459 (2013).
(8)
H. N. Lee, S. M.
Nakhmanson, M. F. Chisholm, H.
M. Christen, K. M. Rabe, and D. Vanderbilt, Suppressed dependence of
polarization on epitaxial strain in highly polar ferroelectrics, Phys. Rev. Lett.98, 217602 (2007).
(9) H. N. Lee, H. M. Christen, M. F.
Chisholm, C. M. Rouleau, and D. H. Lowndes, Strong polarization enhancement in asymmetric three-component ferroelectric
superlattices, Nature, 433, 395 (2005).
(10)
Research
sponsored by the Materials Sciences
and Engineering Division, Office of Basic Energy Sciences, U.S. Department of
Energy.
Host. Prof. D. Vanderbilt