search physics search Rutgers Search Rutgers Rutgers School of Arts and Sciences: Physics and Astronomy

Rutgers Department of Physics and Astronomy

Colloquium Schedule

Colloquia Are Held In The Physics Lecture Hall
At 4:45 P.M. On Wednesday Afternoons

Tea served 4.30pm-4.45pm  All welcome.  


Directions to the Department  


Fall 2015 Schedule


Date Speaker Topic Host
2-Sept Vitaly Podzorov
(Rutgers)
Fascinating photo-physics of functional organic surfaces and interfaces

Small-molecule organic semiconductors form the basis of the field of organic optoelectronics. In order to better understand the intrinsic photo-physical and transport phenomena in this important class of materials, it is necessary to study samples of very high structural order and chemical purity. Such materials exist in the form of molecular single crystals that can be used for fabrication of high-performance prototype devices, such as field-effect transistors, photo-conductors and photo-voltaic cells, in which intrinsic properties of organic semiconductors can be investigated without parasitic effects of disorder. This talk will overview some of the main achievements in the area of organic single-crystal devices, present resent progress and discuss novel methods of surface functionalization that result in an extremely low-noise charge transport regime at the surface of molecular crystals, leading to an observation of unprecedentedly clean and quiet (low-noise) Hall effect. In addition, very interesting non-linear effects in photoconductivity, originating from long-range exciton diffusion and multi-particle interactions, will be discussed.
Gershenson
9-Sept Subir Sachdev
(Harvard)
Strange metals and black holes

Strange metals are conducting states of quantum matter without any quasiparticle excitations. The copper-based high temperature superconductors display a strange metal at temperatures above the critical temperature, T_c, for superconductivity, and at electron densities where T_c is maximal. I will (i) describe a solvable model of a strange metal whose properties match quantitatively with those of charged black holes; (ii) outline a general framework for computing observable properties of strange metals, drawing upon numerous theoretical methods, including the black hole mapping; (iii) describe a recent experiment in graphene, in which theory is compared with a (slightly less) strange metal.
Kotliar
16-Sept Eva Halkiadakis
(Rutgers)
23-Sept Francis Halzen
(Wisconsin)
30-Sept
7-Oct
14-Oct
21-Oct Craig Roberts
(ANL)
The origin of mass and the vacuum in QCD Gilman
28-Oct Daniel Harlow
(Harvard)
Bulk Locality and Quantum Error Correction in AdS/CFT

The AdS/CFT correspondence has given us a non-perturbative description of quantum gravity in asymptotically anti de Sitter space, as a quantum field theory (without gravity) living in a lower number of dimensions. This proposal has passed many tests, but the emergence of bulk locality in the new radial direction has remained somewhat mysterious. In this talk I will discuss recent work relating this phenomenon to the theory of quantum error correcting codes, which was introduced to solve the seemingly unrelated problem of protecting a quantum computer from decoherence. We will see that there are interesting puzzles in AdS/CFT that are naturally resolved in this language, which we will also see gives a sharp meaning to speculations over the past decade relating boundary entanglement to the emergence of bulk geometry. I will illustrate these ideas using an explicitly soluble model of AdS/CFT, constructed using tensor networks.
4-Nov
11-Nov
18-Nov Abhay Deshpande
(Stony Brook)
Understanding the glue that binds us all: the science of the future Electron Ion Collider

We know enough about the fundamental properties of quarks, gluons (collectively called: patrons) and their interactions to be sure that QCD is the correct theory of Strong Interactions. However, when a large number of partons are put together, their collective behavior is often surprising i.e. un-understood. Gluons seem to play a central role in most of these instances. For example, despite forty years of dedicated experimental efforts around the world (CERN, SLAC, DESY, BNL & JLab) and the associated theoretical development in this field, we still do not understand how the nucleon’s spin, a fundamental property of the nucleon, comes about from the collection of its constituents and their interactions. We do not yet fully understand the confinement of patrons in colorless hadrons. Do patron’s angular momentum and gluon’s helicity contributions have something to do with it?. — We do not know yet. On the other hand, when nucleons or nuclei are accelerated to high energies, and explored with a high energy probe, a new state of universal gluon dominated matter is predicted based on experimental evidence from the high energy e-p collider (HERA) at DESY, and nuclear collisions at Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). If such a state of universal gluonic matter (the Color Glass Condensate) exists, it would be fundamentally important to explore and understand its properties. A high-energy high-luminosity electron-ion collider (EIC) with polarized beams and variable center-of-mass energy will be an ideal machine to explore these emergent phenomena and address the most compelling and yet unresolved questions in QCD. I will review the science highlights that motivate this collider and present the prospects of its realization.
Salur
2-Dec Filomena Nunes
(NSCL)
Theory opportunities in nuclear science at the limits of stability

The ultimate goal for nuclear theory is to develop a predictive understanding of nuclei and their interactions grounded in QCD. In addressing this challenge, nuclei at the limits of stability play a crucial role, in that they unveil detailed features of the underlying force. In addition to the intersection of nuclear physics, and astrophysics and cosmology, our fermionic systems exhibit emergent phenomena that are present in other complex systems studied by quantum chemists, atomic, molecular, and condensed-matter physicists, and materials scientists. An overview of the overarching questions our community is addressing will be presented, highlighting the theoretical opportunities that lie ahead. Also, a few concrete examples of my own research in reaction theory will be discussed, demonstrating the importance of coupling theory and experiment for the advancement of the field.
Cizewski
9-Dec Sally Dawson
(Brookhaven)


Please send any comments on this page to mbuckley@physics.rutgers.edu.
Revised 6/22/2015