Publications


58.  Chen Chen, Heung-Sik Kim, Alemayehu S. Admasu, Sang-Wook Cheong, Kristjan Haule, David Vanderbilt, and Weida Wu, , PRB, accepted (2018).
Trimer Bonding States on the Surface of Transition-metal Dichalcogenide TaTe2
Phys. Rev. B, accepted (2018).

57.  Wenhan Zhang, Damien West, Seng Huat Lee, Yunsheng Qiu, Cui-Zu Chang, Jagadeesh S. Moodera, Yew San Hor, Shengbai Zhang, and Weida Wu
Electronic fingerprints of Cr and V dopants in topological insulator Sb2Te3
Phys. Rev. B, 98, 115165 (2018).  Editors' Suggestion    arXiv:1809.06337

56.  Lorenzo Vistoli, Wenbo Wang, Anke Sander, Qiuxiang Zhu, Blai Casals, Rafael Cichelero, Agnès Barthélémy, Stéphane Fusil, Gervasi Herranz, Sergio Valencia, Radu Abrudan, Eugen Weschke, Kazuki Nakazawa, Hiroshi Kohno, Jacobo Santamaria, Weida Wu, Vincent Garcia, and Manuel Bibes
Giant topological Hall effect in correlated oxide thin films
Nature Physics, AOP, (2018).

55.  Stefan Wilfert, Paolo Sessi, Zhiwei Wang, Henrik Schmidt, M. Carmen Martinez-Velarte, Seng Huat Lee, Yew San Hor, Alexander F. Otte, Yoichi Ando, Weida Wu, and Matthias Bode
Scanning tunneling spectroscopy investigations of superconducting-doped  topological insulators: Experimental pitfalls and results
Phys. Rev. B, 98, 085133 (2018).

54. Zaiyao Fei, Bevin Huang, Paul Malinowski, Wenbo Wang, Tiancheng Song, Joshua Sanchez, Wang Yao, Di Xiao, Xiaoyang Zhu, Andrew May, Weida Wu, David Cobden, Jiun-Haw Chu, Xiaodong Xu,
Two-Dimensional Itinerant Ising Ferromagnetism in Atomically thin Fe3GeTe2
Nature Materials, 17, 778-782 (2018).        arXiv:1803.02559 

53. Lin Miao, Yishuai Xu, Wenhan Zhang, Daniel Older, S. Alexander Breitweiser, Erica Kotta, Haowei He,Takehito Suzuki, Jonathan D. Denlinger, Rudro R. Biswas, Joseph Checkelsky, Weida Wu, and L. Andrew Wray ,
Observation of a Topological Insulator Dirac Cone Reshaped by Non-magnetic Impurity Resonance
npj Quantum Materials, 3, 29 (2018).    arXiv:1805.00084

52.  Lu Zheng, Hui Dong, Xiaoyu Wu, Yen-Lin Huang, Wenbo Wang, Weida Wu, Zheng Wang, and Keji Lai,
Interferometric Imaging of Nonlocal Electromechanical Power Transduction in Ferroelectric Domains
PNAS, AOP (2018).   

51.  Wenbo Wang, Yunbo Ou, Chang Liu, Yayu Wang, Ke He, Qi-kun Xue, and Weida Wu,
Direct evidence of ferromagnetism in a quantum anomalous Hall system
Nature Physics, 14, 791-795 (2018).            arXiv:1804.04991

50.  Wenhan Zhang, M.X. Chen, Jixia Dai, Xueyun Wang, Zhicheng Zhong, S-W. Cheong, and Weida Wu,
Topological Phase Transition with Nanoscale Inhomogeneity in (Bi1-xInx)2Se3
Nano Letters, 18 (4), 2677-2682 (2018).           arXiv:1803.07481  

49.  Di Xiao, Jue Jiang, Jae-Ho Shin, Wenbo Wang, Fei Wang, Yi-Fan Zhao, Chaoxing Liu, Weida Wu, Moses H. W. Chan, Nitin Samarth, and Cui-Zu Chang,
The Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures
Phys. Rev. Lett., 120, 056801 (2018).        arXiv:1710.00471

48.  Lu Chen, Fan Yu, Ziji Xiang, Tomoya Asaba, Colin Tinsman, Benjamin Lawson, Paul. M. Sass, Weida Wu, B. L. Kang, Xianhui Chen, and Lu Li,
Torque Diffrential Magnetometry with Qplus-Mode Quartz Tuning Fork
Phys. Rev. Applied, 9, 024005 (2018).  

47.  Jisoo Moon, Nikesh Koirala, Maryam Salehi, Wenhan Zhang, Weida Wu, and Seongshik Oh,
Solution to the hole-doping problem and tunable quantum Hall effect in Bi2Se3 thin films
Nano Letters, 18, 820-826 (2018).   

46.  Yunbo Ou, Chang Liu, Gaoyuan Jiang, Yang Feng, Dongyang Zhao, Weixiong Wu, Xiao-Xiao Wang, Wei Li, Canli Song, Li-Li Wang, Wenbo Wang, Weida Wu, Yayu Wang, Ke He, Xu-Cun Ma & Qi-Kun Xue,
Enhancing the Quantum Anomalous Hall Effect by Magnetic Codoping in a Topological Insulator
Advanced Materials, 30 1703062 (2017).    

45.  Wenhan Zhang, Quansheng Wu, Lunyong Zhang, Sang-Wook Cheong, Alexey A. Soluyanov, and Weida Wu,
Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2
Phys. Rev. B, 96, 165125 (2017)        arXiv:1705.11189

44.  Wenbo Wang, Julia A. Mundy, Charles M. Brooks, Jarrett A. Moyer, Megan E. Holtz, David A. Muller, Darrell G. Schlom, and Weida Wu,
Visualizing weak ferromagnetic domains in multiferroic hexagonal ferrite thin film
Phys. Rev. B, 95, 134443 (2017)

43.  Ying Sun, You Ba, Aitian Chen, Wei He, Wenbo Wang, Xiaoli Zheng, Lvkuan Zou, Yijun Zhang, Qu Yang, Lingjia Yan, Ce Feng, Qinghua Zhang, Jianwang Cai, Weida Wu, Ming Liu, Lin Gu, Zhaohua Cheng, Ce-Wen Nan, Ziqiang Qiu, Yizheng Wu, Jia Li, and Yonggang Zhao,
Electric-Field Modulation of Interface Magnetic Anisotropy and Spin Reorientation Transition in (Co/Pt)3/PMN-PT Heterostructure
ACS Appl. Mater. Interfaces, 9 (12), 10855-10864 (2017)

42.  Matthew Brahlek, Nikesh Koirala, Maryam Salehi, Jisoo Moon, Wenhan Zhang, Haoxiang Li, Xiaoqing Zhou, Myung-Geun Han, Liang Wu, Thomas Emge, Hang-Dong Lee, Can Xu, Seuk Joo Rhee, Torgny Gustafsson, N. Peter Armitage, Yimei Zhu, Daniel S. Dessau, Weida Wu, and Seongshik Oh,
Disorder-driven topological phase transition in Bi2Se3 films
Phys. Rev. B 94, 165104 (2016)

41.  Wenbo Wang, Cui-Zu Chang, Jagadeesh S. Moodera, and Weida Wu,
Visualizing ferromagnetic domain behaviors of V-doped Sb2Te3 thin films
npj Quantum Materials, 1, 16023 (2016)

40.  Jixia Dai, Damien West, Xueyun Wang, Yazong Wang, Daniel Kwok, S.-W. Cheong, S.B. Zhang, and Weida Wu,
        Toward the intrinsic limit topological insulator Bi2Se3
        Phys. Rev. Lett. 117, 106401 (2016).

39. Tobias Mauerer, Matthias Vogt, Pin-Jui Hsu, Gheorghe Lucian Pascut, Kristjan Haule, Valery Kiryukhin, Junjie Yang, Sang-Wook Cheong, Weida Wu, and Matthias Bode,
        Visualizing anisotropic propagation of stripe domain walls in staircaselike transitions of IrTe2
        Phys. Rev. B 94, 014106 (2016).

38. Wenbo Wang, Ying Sun, Yonggang Zhao and Weida Wu,
        Quantitative measurements of shear displacement using atomic force microscopy
        Appl. Phys. Lett., 108, 122901 (2016).  

37. Nikesh Koirala, Matthew J. Brahlek, Maryam Salehi, Liang Wu, Jixia Dai, Justin Waugh, Thomas Nummy, Myung-Geun Han, Jisoo Moon, Yimei Zhu, D. Dessau, Weida Wu, N. Peter Armitage, and Seongshik Oh,
        Record Surface State Mobility and Quantum Hall Effect in Topological Insulator Thin Films via Interface Engineering
        Nano Lett., 15, 8245-8249 (2015).

36. Wenbo Wang, Fang Yang, Chunlei Gao, Jinfeng Jia, G. D. Gu and Weida Wu,
        Visualizing ferromagnetic domains in magnetic topological insulators
        APL Mat. 3, 083301 (2015).

35. Jixia Dai, Kristjan Haule, J.J. Yang, Y.S. Oh, S-W. Cheong and Weida Wu,
        Hierarchical stripe phases in IrTe2 driven by competition between Ir dimerization and Te bonding
        Phys. Rev. B, 90, 235121, (2014).   arXiv:1412.2846

34. Jixia Dai, Wenbo Wang, Matthew Brahlek, Nikesh Koirala, Maryam Salehi, Seongshik Oh and Weida Wu,
        Restoring pristine Bi2Se3 surface with an effective Se decapping process
        Nano Research, 8, 1222-1228 (2014).  arXiv:1412.2847

33. Yanan Geng and Weida Wu,
        Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field 
        Rev. Sci. Instrum. 85, 053901 (2014)

32.   Namrata Bansal, Myung Rae Cho, Matthew Brahlek, Nikesh Koirala, Yoichi Horibe, Jing Chen, Weida Wu, Yun Daniel Park, Seongshik Oh,
        Transfer of MBE-grown Bi2Se3 films to arbitrary substrates and Gate-induced metal-insulator transition via Dirac gap
        Nano Lett., 14, 1343-1348 (2014).    arXiv:1402.6307

31.    Wenbo Wang, Yanan Geng, and Weida Wu,
        Background-free Piezoresponse Force Microscopy for quantitative measurements
        Appl. Phys. Lett., 104, 072905 (2014). 

30.   Hena Das, Aleksander L. Wysocki, Yanan Geng, Weida Wu and Craig J. Fennie,
        Bulk magnetoelectricity in the hexagonal manganites and ferrites
        Nature Communications, 5,  2998 (2014). doi:10.1038/ncomms3998   arXiv:1302.1099 

29. Yanan Geng, Hena Das, Aleksander L. Wysocki, Xueyun Wang, S-W. Cheong, M. Mostovoy, Craig J. Fennie and Weida Wu
        Direct visualization of magnetoelectric domains
        Nature Materials, 13, 163-167  (2014). doi:10.1038/nmat3813

28. Pin-Jui Hsu, Tobias Mauerer, Matthias Vogt, J.J. Yang, Yoon Seok Oh, S-W. Cheong, Matthias Bode, and Weida Wu
        Hysteretic melting transition of a soliton lattice in a commensurate charge modulation
        Phys. Rev. Lett., 111, 266401  (2013).    arXiv:1311.3015

27. Wenbin Wang, Jun Zhao, Wenbo Wang, Zheng Gai, Nina Balke, Miaofang Chi, Ho Nyung Lee, Wei Tian, Leyi Zhu, Xuemei Cheng, David J. Keavney, Jieyu Yi, Thomas Z. Ward, Paul             C. Snijders, Hans M. Christen, Weida Wu, Jian Shen and Xiaoshan Xu
        Room-temperature multiferroic hexagonal LuFeO3 films
        Phys. Rev. Lett., 110, 237601 (2013).    arXiv:1209.3293

26     Rama K. Vasudevan, Weida Wu, Jeffrey R. Guest, Arthur P. Baddorf, Anna N. Morozovska, Eugene A. Eliseev, Nina Balke, V. Nagarajan, Peter Maksymovych and Sergei V. Kalinin
        Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics (Feature Article)
        Adv. Funct. Mater., 23, 2592–2616 (2013).

25. Pin-Jui Hsu, Tobias Mauerer, Weida Wu, and Matthias Bode
Description: Description: Description: Description: http://prb.aps.org/images/icons/prbsugg30x30.png Observation of a spin-density wave node on antiferromagnetic Cr(110)  islands
        Phys. Rev. B, 87, 115437 (2013).

 24. Yanan Geng, J.H. Lee, D.G. Schlom, J.W. Freeland, and Weida Wu
Description: Description: Description: Description: http://prb.aps.org/images/icons/rapid30x30.gif Magnetic inhomogeneity in a multiferroic EuTiO3 thin film

Phys. Rev. B, 87, 121109 (R) (2013).

23. Yanan Geng, N. Lee, Y. J. Choi, S.-W. Cheong, and Weida Wu
        Collective magnetism at multiferroic vortex domain walls
        Nano Lett., 12, 6055–6059 (2012).   arXiv:1201.0694 

22.  Weida Wu, Y. Horibe, N. Lee, S.-W. Cheong, and J. R. Guest
        Conduction of topologically-protected charged ferroelectric domain walls
        Phys. Rev. Lett., 108, 077203 (2012).    arXiv:1112.6193

21.  Edward B. Lochocki, S. Park, Nara Lee, S.-W. Cheong, and Weida Wu
        Piezoresponse force microscopy of domains and walls in multiferroic HoMnO3
        Appl. Phys. Lett., 99, 232901 (2011).

20.  Weida Wu, J. R. Guest, Y. Horibe, S.Park, T. Choi, S.-W. Cheong, and M. Bode
        Polarization-modulated rectification at ferroelectric surfaces
        Phys. Rev. Lett., 104, 217601 (2010).

19   T. Choi, Y. Horibe, H.T. Yi, Y.J. Choi, Weida Wu, and S.-W. Cheong
         Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3
        Nature Materials, 9, 253 (2010).

18.   S. Park, P. Ryan, E. Karapetrova, J. W. Kim, J. X. Ma, J. Shi, J. W. Freeland, and Weida Wu
        Microscopic evidence of a strain-enhanced ferromagnetic state in LaCoO3 thin film
          Appl. Phys. Lett., 95, 072508 (2009).

17.   Y.J. Choi, S. B. Kim, T. Asada, S. Park, Weida Wu, Y. Horibe, and S-W. Cheong,
        Giant magnetic coercivity and ionic superlattice nano-domains in Fe0.25TaS2
         Europhysics Lett., 86, 37012 (2009).

16.   S. Park, Y. Horibe, Y. J. Choi, C. L. Zhang, S.-W. Cheong, and Weida Wu

Description: Description: Description: Description: http://prb.aps.org/images/icons/rapid30x30.gif   Pancakelike Ising domains and charge-ordered superlattice domains in LuFe2O4
          Phys. Rev. B, 79, 180401 (R) (2009).

15.   Weida Wu, V. Kiryukhin, H.-J. Noh, K.-T. Ko, J.-H. Park, W. Ratcliff II, P.A. Sharma, N. Harrison, Y.J. Choi, Y. Horibe, S. Lee, S. Park, H.T. Yi, C.L. Zhang, S.-W. Cheong
        Formation of pancakelike Ising domains and giant magnetic coercivity in ferrimagnetic LuFe2O4
          Phys. Rev. Lett., 101, 137203 (2008).

14.   Y.H. Sun, Y.G. Zhao, H.F. Tian, C.M. Xiong, B.T. Xie, M.H. Zhu, S. Park, Weida Wu, J.Q. Li, and Q. Li
       The electric and magnetic modulation of fully strained "dead" layers in La0.67Sr0.33MnO3 films.
       Phys. Rev. B, 78, 024412 (2008).

13.   B.T. Xie, Y.G. Zhao, C.M. Xiong, S. Park, and Weida Wu
       Current-voltage characteristics of phase separated La0.5Ca0.5MnO3/Nb-SrTiO3 p-n junction and magnetic tunability
       Appl. Phys. Lett., 92, 232109 (2008).

12.   Weida Wu and Paul M. Chaikin
     Numerical investigation of Nernst effect in quasi-one-dimensional systems
       Phys. Rev. B, 76, 153102 (2007).

---------- Before joining Rutgers ---------------

11.  Casey Israel, Weida Wu and Alex de Lozanne
       High-Field Magnetic Force Microscopy as Susceptibility Imaging
        Appl. Phys. Lett., 89, 032502 (2006).

10.  Weida Wu, Casey Israel, Namjung Hur, Soonyong Park, Sang-Wook Cheong and Alex de Lozanne
       Magnetic imaging of supercooling glass transition in a weakly disordered ferromagnetic manganite.
        Nature Materials, 5, 881 (2006).

9.   Weida Wu, Ayan Guha, Suenne Kim and A. L. de Lozanne
       A compact dual-tip STM design
      IEEE Transection on Nanotechnology, 5, 77 (2006).

8.   Moon-Sun Nam, Arzhang Ardavan, Weida Wu, P.M. Chaikin
      Magnetothermoelectric effects in (TMTSF)2ClO4
       Phys. Rev. B, 74, 073105 (2006).

7.   J. Shinagawa, Weida Wu, P. M. Chaikin, W. Kang, W. Yu, F. Zhang, Y. Kurosaki, C. Parker, S.E. Brown
       Se77 NMR studies on magic angle effect and nature of the superconducting state in the organic superconductors (TMTSF)2X
       J. Low Temp. Phys., 142, 227 (2006).

6.   Weida Wu, N. P. Ong and P. M. Chaikin
      Giant angular-dependent Nernst effect in quasi-one-dimensional organic conductor (TMTSF)2PF6
      Phys. Rev. B, 72, 235116 (2005).   arXiv:cond-mat/0507612

5.   Weida Wu, P.M. Chaikin, W. Kang, J. Shinagawa, W. Yu and S.E. Brown
        77Se NMR Probe of Magnetic Excitations of the Magic Angle Effect in (TMTSF)2PF6
        Phys. Rev. Lett., 94, 097004, (2005).

4.   N.P. Ong, Weida Wu, P.M. Chaikin and P.W. Anderson
        Phase Coherence and the Nernst Effect at Magic Angles in Organic Conductors,
       EuroPhys. Lett., 66 (4) 579  (2004).   arXiv:cond-mat/0401159

3.   W. Wu, I.J. Lee and P.M. Chaikin,
Giant Nernst Effect and Lock-in Current at Magic Angles in (TMTSF)2PF6,
Phys. Rev. Lett., 91,  056601 (2003).

2.   W. Wu, I.J. Lee, S.E. Brown, M.J. Naughton and P.M. Chaikin,
On the angular dependences of the superconducting and normal state properties of the Bechgaard Salts: Triplet Superconductivity, Enhanced Hc2, Giant Nernst Effect at Lebed Magic Angles,
Syn. Met., 137, 1305 (2003).

1.    I.J. Lee, W. Wu, M.J. Naughton and  P.M. Chaikin,

        Hc2 Enhancement and Giant Nernst Effect in (TMTSF)2PF6
      J. Phys. IV, 12, 189 (2002). 

Presentations