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ABSTRACT

We show that conformal invariance and unitarity severely limit
the possible values of critical exponents in two dimensional systems by
finding the discrete series of unitarisable representations of the
Virasoro algebra. The realization of conformal symmetry in a given
system is parametrized by a real number c, the coefficient of the
trace anomaly. For c<1 the only values allowed by unitarity are
c=1-6/m(m+1), m=2,3,4«++ ., For each of these values of c unitarity
determines a finite set of rational numbers that must contain all
possible critical exponents. These finite sets account for the known
critical exponents of the following two dimensional models: Ising(m=3),
tricritical Ising(im=4), 3-state Potts{m=5), and tricritical 3-state
Potts(m=6).

1 INTRODUCTION

One of the most intriguing features of statistical mechanical
systems and of their analogs, euclidean field theories, is the existence
of special critical points where -the systems are scale invariant.
Correlation functions of the fluctuating fields mirror this lack of scale
by transforming very simply under dilations of space. The two point
function <#(#(0)>, for example, is proportional to r~2%X. The number
x is called the scaling dimension of # (the anomalous dimension in
field theory). The scaling dimensions of the fields determine the
critical exponents of the system.
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The renormalization group has provided a satisfying conceptual
framework for understanding the occurrence of scale invariant points.
They are fixed points of the system under renormalization group
transformations. The scaling dimensions describe the linearized
behavior of the renormalization group near the fixed point. Although
this viewpoint is elegant and compelling, it provides no general
procedure for classifying or constraining possible fixed points.
Calculations are done within the context of specific families of models.

Many known examples of fixed points display a richer symmetry
than simple scale invariance. They are invariant under local
rescalings: transformations of space that preserve angles but change
lengths differently at different points. These are the conformal
transformations. The question arises whether conformal invariance can
be used to constrain or construct possible fixed point theories. This
possibility was suggested by Polya.kovl.

Two dimensions is an especially promising place to apply
notions of conformal invariance, because there the group of conformal
transformations is infinite dimensional. Any analytic function mapping
the complex plane to itself is conformal. Belavin, Polyakov and
Zamolodchikov (BPZ)Z have shown how the rich structure of the
conformal group in two dimensions can be used to analyze conformally
invariant field theories.

Many two dimensional statistical mechanical systems can also
be interpreted as 1+1 dimensional quantum field theories. The
distinguishing feature of the guantum theories is unitarity, equivalent
to the property of reflection positivity in the statistical systems. We
shall see that the quantum mechanical condition of unitarity, in the
presence of the large conformal transformation group, puts a powerful
constraint on the allowed physical systems.

2. CONFORMAL INVARIANCE IN TWO DIMENSIONS

Conformal invariance is simplest to describe in complex
coordinates z=x+iy, #=x-iy. The infinitesimal conformal transformations
are z—ztviz), E—&(Z). A simple basis is vizi=e*], Fp=el*l
When p=-1,0,1 these generate the group of fractional linear
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transformations z—ew(z)=(az+b)/(cz+d), thich are the only globally
defined conformal transformations on the Riemann sphere. This group
is abbreviated SLz.

Conformally invariant systems are described by correlation
functions of a collection of conformal fields. Conformal fields are
tensors of the form d(z.i)dzhdih. which transform infinitesimally as

() 0 — ¢+ [Vl + v + W22 + av@]e.
Oz oz

The correlation functions are invariant under the SLZ transformations.
The two point function, for example, obeys

@ <olz)otzh> = wiz) ) w ) @, P stwiz, ) otwizy)>.

From the invariance under Euclidean and scale transformations we get
<O(rei9)¢(0)>=r'2‘h+h)e'2io(h'h). so h+h is x, the scaling dimension of
#, and h-h is its spin.

The consequences of conformal variations with n not equal
-1,0,1 are summarized by saying that there is a field T‘w(x.yl.
called the astress energy tensor, which generates local scale
transformations.  Translation invariance and global scale invariance
require le to be conserved and traceless; in complex notation we
can write Tuvdx"dx”éT(z)dzzﬁ"f'(i)dz'a. The requirement that T
generate local scale transformations is expressed in the operator
product of T with conformal fields:

(3) Tiw)#(z.0 htw-2)20(2.8) + (w-2)"13,0(z.2)

and similarly for T. The action of conformal transformations on
correlation functions can then be expressed as

@ ——gdw voTw) 0z = [vi22- + '] stz
, 2xiC oz
where the contour surrounds z. A similar equation holds for T. The

splitting of the z and Z dependence is a noteworthy simplification.
The action of conformal transformations on T itself is given by
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the operator product:

6)  TWITE@ ~ jew-2"% + 2w-2"2T(w) + (w-2)"1T"(w)
The form of (5) is forced by equation (3) and SLZ invariance. T
satisfies the same relation, assuming the theory is zewZ invariant.

The number ¢ measures the deviation of T from transforming as
a true conformal field for n#%-1,0,1. It also describes the lack of
invariance of the ground state to curving the underlying space - an
effect referred to as the trace nnomalys.

3. HILBERT SPACE INTERPRETATION

There exist general conditions on a system that allow it to be
reconstructed as a theory of operator fields acting on a space of
states with a hermitian inner product. The correlation functions are
interpreted as vacuum expectation values of time-ordered products of
operator fields. Some of the most important models have the property
that the inner product on the space of states is positive definite, i.e.
the state space is a Hilbert space. This unitarity property allows
such models to be interpreted as quantum field theories. Models
where a hermitian transfer matrix construction can be made provide
concrete examples.

The positivity of the metric in the Hilbert space of states is
equivalent to the property of reflection positivity in the correlation
functions. Reflection positivity is imposed by singling out a
hypersurface and requiring that correlations of products of fields on
one side of the hypersurface with their reflections on the other side
be nonnegative. The hypersurface is typically interpreted as constant
in time. In two dimeneions the hypersurface would be a line and the
reflection would be zZ.

The infinitesimal conformal transformations sz=eZ"*! are
singular for n#-1,0,1 either at the origin or at infinity, so it is useful
to define operators on an alternate hypersurface, the unit circle,
where z""'1 is ealways well-behaved. The reflection operation is
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ze1/Z. Because correlation functions are SLZ invariant, and because
the unit circle can be mapped by an 8[.2 transformation to a line,
reflection positivity through a line is equivalent to reflection positivity
through the unit circle.

We can express correlation functions for quantum field theories
as operator expectation values in this nonstandard Hilbert space.
Dilation takes the place of time translation and radial ordering takes
the place of time ordering. Alternatively, using coordinates
z=e""i9. this is quantum field theory in Ruclidean “time” 7 and a
periodic one dimensional space 6.

We define the operators that implement conformal
transformations by

= v -n-2 Sne & -he27
(6) T(z)—n'_i._“z Ln T(i)-ng_”: l‘n
It follows from (3), (5) and hermiticity of the inner product that the
stress energy tensor is seif-adjoint, i.e. L'T(l/i)d(l/i)zil f='l‘(z)dzz,
and the equivalent for T. This translates to

] L'=L__ L
Formula (3) rewritten in operator language reads
8 CL_,#1 = 2*12_¢ 4 pne1)Pe.
(8) L, ™ (n+1)

Dilations are generated by L0+£0' rotations by LO-I:O. and translations
by L_; and E-l' The SL, invariance of the correlation functions
implies SLZ invariance of the vacuum: Ln|0>=0=1-.nl0>. for n=-1,0,1.

Equation (5) is equivalent to the commutation relations

- c 2
{9) ELm.LnJ = (m—n)Lm,,n + T;m(m 'nsm,-n'
‘The operators f‘n satisfy the same algebra and commute with all the
L's. The algebra (9) is called the Virasoro al:ebra4. It was first
encountered in string theory where conformal invariance is a residue
of full reparametrization invariance in a certain {conformal) nuxes.
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The central term with coefficient ¢ in (9) describes the
particular realization of conformal symmetry in the theory. We see
that the product of two Virasoro algebras each with central charge c
acts on the space of states of the conformal field theory. Reflection
positivity tells us that this is a unitary representation.

If a field # satisfies the transformation law (8}, at least for
=0, then L0¢(0)|0>=hi(0)|0>. Thus the problem of finding critical
exponents is reduced to understanding the allowed eigenvalues of LO.
To constrain these values we must remember that the states of the
Hilbert space are not only eigenstates of Lo; they also form a unitary

representation of the Virasoro algebra.

4. REPRESENTATIONS OF THE VIRASORO ALGEBRA

We focus on representations of one Virasoro algebra since
representations of the product will just be tensor products of
representations of the factors. First, the Ln for n>0 are lowering
operators for Lg. i.e. Lol.n=Ln(L0-n). The vacuum must have the
lowest eigenvalue of Ly, so it is annjhilated by all the L, for n>0, in
addition to the SL, generators n=-1,0,1. Each conformal operator #
can be associated with a state 1h>=6#(0)10>. By (8), this state
satisfies Lglh>=h(h> and L,th>=0 for n>0. A state such as (h>
which is annjhilated by all the lowering operators is called a highest
weight vector. There is a one to one correspondence between the
highest weight vectors and the conformal fields of the theory.

Once we have a highest weight vector we can build a
representation of the Virasoro algebra by applying the L_, n21.
These states can be classified by LO eigenvalue. A state is in the
nth level if its I‘O value is h+n. A basis of states at the nth level is
given by

(10) CL-le-kz' . -L_kmlh>: Zki=n. k1>k2> o -;km>03.
There are P(n) such states, where the classical partition function Pfn)

is the number of ways of writing n as a sum of positive integers.
The tower of such levels is called a highest weight representation of
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the algebra.

In terms of field theory, these higher level states correspond to
operators of higher scaling dimension, obtained by applying products of
stress-energy tensors to some conformal field. @We should think of
each conformal field as carrying such a conformal family along with it.
The organization of all the fields of the theory into conformal
families, each associated with a conformal field‘. can be accomplished
by making repeated operator products of T(z) with an arbitrary field.
The operator coefficient of the most singular term will eventually obey
the defining relation (3) of a conformal field.

The inner product of any two states in the span of basis (10)
can be computed from the hermiticity condition (7) and the
commutation relations (9). The unitarity constraint is that the matrix
of inner products should have no negative eigenvalues. We can impose
the positivity constraint level by level because different levels have
different Lo eigenvalues and hence are orthogonal. A state |¢> in
the span of basis (10) with <y Iy> negative is called a "ghost.” If a
ghost is found on any level the representation cannot occur in any
unitary theory.

At level 1 there is a single state, 11>=L_4Ih> and
<111>=2h. Therefore positivity at level 1 rules out all h<0. At level
n the state In><L_ |h> has <nIn>=2nh+cnn?-1)/12. If c<0 this is a
ghost state for large n. So we can limit our attention to the region
¢20, h20.

5. THE KAC DETERMINANT AND UNITARITY
To proceed we employ a version of Kac's formula for the
determinant of the nth level matrix of inner productss:

- = P(n-k)
{11) detM(n)(c.h) = kx_rla'k(c,h) (n
where
(12) ¢k(c.h) = pg-u(h’h"'“(c”

425



where p,q range over the positive integers and

C(m+1)p-mql2-1
(13) h_ (c) =
LA 4m(m+1)

The parameter m is given by

(14) c=1- 5%

m(m+1)
An overall positive constant has been suppressed in formula (11). The
determinant has no zeroes in the region 1<c, O<h, and the matrix of
inner products for a given level is positive definite for h large enough,
so there are no ghosts in the region 1£c, 0<h. Moreover a point
is ghost free up to level n if it can be continuously connnected to
1<c, 0<h, without crossing a vanishing curve h=hp'q(c). pasn. The
region -«<c<l corresponds to 0<m<ee.

The determinant is negative in some regions and positive in
others. We can immediately eliminate all negative regions because
they necessarily contain an odd number of ghosts. A straightforward
examination of the h”'q curves (see the figures) shows that any point
in the c,h plane for c<1 will have a negative determinant at some
level unless that point is actually on one or more of the curves hp.q‘
Then its determinant will be zero on all levels n2pq.

We already see that unitarity has limited the possible scaling
dimensions for a given ¢ {or m) to the discretely infinite set of
numbers hp'q(c).

We mention that if the determinant vanishes at a point c,h at
level n then there is a null state at that level, i.e. a state in the
span of (10) orthogonal to every state including itself. Such states
give rise to linear differential equations on the correlation functions?.
The above argument tells us that correlation functions of all unitary
models for c<1 satisfy such differential equations.

In fact the unitary theories are far more limited. We find that
there are ghosts everywhere on the vanishing curves except, possibly,
at a certain set of isolated points. We give a sketch of the argument
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here; details can be found in reference 7.

First let us examine what happens on the lowest levels. The
vanishing curves for level 2 are shown in figure 2. We have already
explained that region I and its border are ghost free through the
second level because they are connected to c>1, h>0. The level 2
determinant is negative in region II, so there is a ghost there.

Now look at level 3 (figure 3). Region I and its border are
ghost free. The level 3 determinant is negative in regions III and
II. Region II, was already eliminated on level 2 so the new
information is that region III has a ghost. The question is whether
there is a ghost on the vanishing curve "2,1 on the border between
regions IIa and IIIL

To settle the question we examine the pattern of
subrepresentations at the intersection point A (m=3,h=1/2). There is a
null state 12,1> at level 2 because h=ha’1. There are no null states
at lower levels, i.e. levels 0 and 1, so 12,1> is a highest weight
vector, i.e. is annihilated by all the lowering operators L, for n>0. It
weight is given by Lgl2,1>=(h+2)12,1>. The raising operators acting
on 12,1> generate a subrepresentation consisting entirely of null
states. In particular, L_;12,1> is a null state on level 3. There is
also a null state 13,1> on level 3 because h=h3'1 at A. The question
is whether 13,1> is in the subrepresentation generated from 1[2,1>.
If it were, then Kac's determinant formula for the subrepresentation
detMls_z,(c,h+2)=2(h+2) would have to vanish. Since it does not
vanish, the ghost in region III is distinct from the states in the
subrepresentation and eliminates all of the vanishing curve h2.1 to the
left of A. The curve h3,l is an example of what we will call a
"cutting” curve.

Now we sketch the general argument. We consider one curve
hp'q at a time, in order of increasing n=pq. We will describe how
successive segments of hp.q are eliminated by cutting curves. The
curve hp_q first appears as a vanishing curve at level n and remains
as a vanishing curve on all levels greater than n. We define the first
intersection on hp.q at level n'2n to be the intersection closest to
c=1 of hp’q with another vanishing curve. We will show that there
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are ghosts at all pointa of hp.q except, possibly, the first
intersections. When hp'q appears at level n it has a first intersection
(except for the case p=n, q=1). Along hp.q as ¢ decreases from this
first intersection the curve enters the region already known by the
determinant argument to contain ghosts on previous levels, except for
points where it intersects other vanishing curves from previous levels.
By assumption we have already considered the points on those curves.
So we need consider only the interval on hp.q from c=1 to the first
intersection (or its whole length if q=1).

We will show that only the first intersections can be ghost free
by arguing that, when a new vanishing curve hp‘,q' appears at level
n'=p’'q’ and makes a new first intersection by crossing hp.q between
c=1 and what was the first intersection on level n'-1, the interior of
the interval between the two first intersections acquires a ghost. The
curve hp"q- thus acts as a cutting curve. Figures 4-12 show the
vanishing curves on levels 4-12. Open dots mark the intervals
eliminated by cutting curves.

The cutting pattern is clearest if we organize the hp,q curves
into clusters indexed by k=p-q. An elementary argument shows that
the first intersections are exactly the intersections between curves in
cluster k and curves in cluster -1-k (taking the intersection closest to

c=1 if there are two). These are the points

6
m(m+1l)

c=1- m=2,3,4, ==

{15)

. ‘) C(m+1)p-mql? -1
-hp'qc - 4dm(m+l)

for p=1,2,» « *,m-1 and g=1,2,* - -.p.‘

We now generalize the argument we used for level 3. Consider
the new first intersection h=hp'q=hp-'q-. At level n, since h=hp.q and
there are no vanishings at lower levels, there is a null state Ip,q>
which is a highest weight vector. It generates a highest weight
representation consisting of null states. At level n' there is a null
state Iip'.g"> because b=hp.'q-. It is simple to check that

detM(n'_n)(c.h'*n)atO at all the first intersections (15). It follows that
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ip'.qa"> lies outside the subrepresentation generated from Ip,q>.
Therefore there is a ghost on bp'q on one side or the other of hp-‘q-.
It remains only to show that the ghost is on the side away from c=1.
We do this by following the successive first intersections the cutting
curve hp-’q- makes with curves in cluster k=-1+q'-p’' as it leaves the
¢=1 axis. At the first one the ghost is on the side away from c=1
because the other side can be connected to c>1. The ghost continues
to exist along the cutting curve on the side farther away from c=1 at
each successive first intersection the cutting curve makes in cluster k
because there are no intervening intersections with curves not in
cluster k. This serves to eliminate all the intervals on curves hp.tl
between first intersections, and leaves only the first intersections as
possibly ghost free.

We have proved that all unitary representations are contained
in the list (15) of first intersections, but not that all representations
on the list are in fact unitary. We have verified numerically that all
first intersections are ghost free through level 12. We have a
heuristic argument that they remain ghost-free to all levels. Assume
that the matrix of inner products can be diagonalized analytically
throughout the whole region of interest (h>0,c>0 say), so that the norm
squared of each state is a product of factors of the form
(h-hp.q)(h-hq'p). p#q or (h-hp.p). The pattern of subrepresentations®8
at c=1 implies that states whose norms vanish on the curve hD,q will
also have zero norm on all the curves hp—k.q-k' k21. At the first
intersections m is an integer. Then the symmetry hp,q=hp +m,q+m+1
ensures that whenever a factor (h-hp'q)(h-hq'p) or (h-hp.p) is negative,
another factor (h'hp-k,q-k’(h'hq-k,p-k’ or ‘h'hp-k,p-k) is zero. Thus
the absence of ghosts at the first intersections would be proved if we
could verify the diagonalization assumption.

We have carried out the analytic diagonalization explicitly for
levels 1-5. It might be possible to study the barrier to such a
diagonalization from inconsistencies in subrepresentation patterns
around polygons of vanishing curves in the c,h plane. In principle we
can check for these. There are no such barriers in the region of
interest for levels 1-12. Alternatively we may be able to use
techniques developed by Peigin and Fukss. Zamolodchikov1? and
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Kadanoff and Nienhuisl! to exhibit analytic deformations of correlation
functions away from c=1.

6. CONCLUDING REMARKS

Unitarity has restricted the possible values of scaling
dimensions to the simple list of rational numbers (15) when c<l. We
display the allowed h values for m=3,4,5,6 in the right half of table I.
Remember that the scaling dimension of a field is x=h+h and its spin
is h-h. We find12 the Ising model is described by m=3 representation,
tricritical Ising by m=4, 3-state Potts by m=5, and tricritical 3-state
Potts by m=6. The known scaling indices for these models and the
h,i candidates are displayed in the left half of table I. All of the
known exponents are accounted for. Note that systems with
continuously variable critical exponents like the Baxter, Ashkin-Teller
and gaussian models live at c=1 where unitarity allows all h>0.

We have used unitarity to provide strong constraints on possible
reperesentations of conformal invariance, but there are additional
requirements on a sensible theory: closure of the operator product
expansion and crossing symmetry of correlation functionsl:2. BPZ2
have developed differential equation techniques which allow
implementation of these conditions when the space of states is made
up of representations with null states, i.e. h=hp'q(c). For the special
values of ¢ corresponding to m rational, m=r/(s-r), r<s, 3r22s, they
bhave found!3 finite sets of conformal fields that must close under the
operator product expansion. The scaling dimensions are given by
h=hp'q(c), 1€p<r, 1€q<s. Note that the unitary representations (15)
correspond to s=r+1. Dotsenko!? has used the differential equation
technique to find a closed operator algebra for the 3-state Potts
model and to construct some of its correlation functions. Notice that
in table I the 3-state Potts and tricritical 3-state Potts models do not
exhaust all the possibly unitary representations. For 3-state Potts,
the representations that are used make up the closed subalgebra found
by Dotsenko. For the tricritical model the representations used form
a closed subalgebra of the same type. It is an interesting question
whether there exist larger models for m=5 and 6 using all possible

430



representations and containing the Potts models as sub-models.

Unitarity tells us that the only allowed representations for c<1
have null states, so the differential equation techniques apply. It
should now be straightforward to sort out all possible unitary
conformally invariant models with c<1. The problem is a finite one
because only a finite number of re_presentations are allowed at a given
m. Such a systematic construction of scale invariant models would
partially realize the bootstrap program initiated by Kadanoff19 and
Polyakovls.

The new models with m27 are particularly tantalizing. Do they
exist? What are they? What are their symmetries? If any of these
models had a continuous internal symmetry generated by the line
integral of a conserved local current then Buclidean invariance would
require the two components of the current to have h=1, h=0 and h=0,
h=1. But h=1 is never unitary, so there is no possibility of continuous
internal symmetry.

There exists a supersymmetric extension of the Virasoro algebra
called the Ramond-Neveu-Schwarz alzebra". Kac has written a
determinant formula for this algebra as well®. The methods of section
5 apply: only first intersections can be ghost-free. The allowed
representations, for §c<l. are

fe=1- m =234, :-
m(m+2)
(16)
1 2
(p-q)a+p|“-1
h=hpq(c)=h ]
4 2m(m+2)

were p,q are integers, both even or both odd, O<p<m, 0<q<p. Note
that h=1/2 does not occur, so there are no internal supercurrents.

The representations ¢=7/10, h=0, 1/10 of the super conformal
algebra are composed of the representations ¢=7/10, h=0, 3/2, 1/10,
3/5 of the Virasoro algebra. These are the representations which
occur in the Z, invariant subalgebra of the tricritical Ising model, so
it seems likely that a ¢=7/10 supersymmetric model forms a subsector
of the tricritical Ising model”. Presumably the fermionic partners are

combinations of order and disorder variables. If this identification of



models is justified then physical systems described by the tricritical
Ising model, such as helium adsorbed on Krypton-plated graphitels, are
supersymmetric.

Models made from representations with m2>4, ie. 1<£¢<3/2,
would all be new, with the possible exception m=4, ¢=1. For c=1 the
allowed representations are h=0, 1/16, 1/6 and 1. Models using h=0,
1/6 and 1 or bh=0, 1/16 and 1 can tentatively be identified with
special points in the gaussian model7. The h=1 representation would
correspond to a marginal operator breaking the supersymmetry. The
representations of the super algebra might also be of interest in
superstring theorylg.

From a general point of view the striking feature of our result
is the extreme rigidity of the conformal bootstrap. For c¢<1 it seems
that unitarity is the crucial conmstraint. For c21 unitarity is only a
mild requirement, but the possibility exists that crossing symmetry, the
other element of the bootstrap, will play a crucial role in limiting the

possible realizations of conformal invariance.
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TABLE I COMPARISON WITH KNOWN CRITICAL EXPONENTS®

unitary highest

X

field

model

weights h.p_q(c)b

—6
L LT )

Ising
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wd N omp

n=4

tricritical

(-
[l B

w
71

~jo

Ising

M|n

ajln

oln

LA

LA

[ 2]
L] )

[}
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[ o]
21

-f o

ol

ojn

Tjn

~Nlm

| 4]
i

~jm
~Nfem

<™

3-state

~jn

~Nfin

o

CH
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~Njn

~Njn

~n

~la

~
—in

{continued)



TABLE I (continued)

model field x h h unitary highest
weights hp q(c)

o L T
21 21 21
€ 3 i .l m=6 .1..
7 7 7 7
tricritical 20 10 10 33
21 21 21 56 7
3-state t 1o ."’. 3 13312
7 7 7 21 56 7
Potts CH 7 12 3 1_ 10 8522
7 7 7 56 21 56 7
3 4 ] 0o 32 4 23 ¢
3 3 3 8 3 8
23 22 L
7 7 7

[,
(2]
(-}

2 gee reference 20 and references therein. For the operator of
dimension 3 in the tricritical Ising model see reference 21. Note that
reference 20 gives infinite sequences of possible irrelevant operators,
not all of which are known to occur. We list only those which our
results allow as conformal operators. The spin assignments, h-K, are
consistent with what is known. The CH operators can also be
interpreted as derivatives of other operators.

b The weights h are listed with p running horizontally from 1 to
m-1 and q runmng %ertlcally from 1 to p.
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KEY TO THE FIGURES

The vanishing curves for level n are shown in figure n. These
are the curves h=hp_q(c). pa€n. All of the curves in fi!_ure n are also
present in figure n+1. Note that the vertical axis is /n and that the
scale changes from graph to graph.

The individual curves can be identified by their behavior for ¢
near 1:

by o2-6€) ~ 2ip-0% + Lp-a)(p+a)’ € pq
' b 4

~ 1,2
hp'p(l—Gt) -;(p ~-1)e.

The region connected to c>1, h>0 is ghost free through level n,
as are the solid lines and the points marked with a circle and cross.
The marked points, and also the ends of solid lines, are first
intersections.

A region bounded by two solid lines and a line of open dots
was ghost free on the previous level but has negative determinant and
therefore a ghost on the present level.

A line of open dots represents a segment of a vanishing curve
which was ghost free through the previous level but which acquires a
ghost on the current level, by the cutting mechanism described in

section 5.
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