Monday, October 9, 2017, 1:30 PM, room 112
Harry Sims
Probing nuclear structure around neutron number 82 with (d,p) reactions.

Models of nuclei far from stability rely heavily on their single particle structure, which constrains the location and nature of nuclear states. The Shell model predicts magic numbers of protons and neutrons which form shell closures in stable isotopes, analogous to noble gases in atomic physics. As studies move towards unstable nuclei, more experimental data is needed to provide these constraints. With the use of RIBs (Radioactive Ion Beams) in inverse kinematics, experiments can populate states in unstable nuclei and probe their characteristics through (d,p) reactions. This presentation will include the methods used to extract excitation energies, spins, parities and spectroscopic factors of populated states in neutron rich nuclei around the N=82 region. The 132Sn(d,p)133Sn reaction will be discussed, showing the single particle states above the N=82 neutron gap, as well as preliminary results for 134Xe(d,pg)135Xe which utilizes both charged particle and gamma ray detection in coincidence.