What about the weak interactions?

- Discovery of radioactivity - 1896 Becquerel Uranium
 - $N_1 \rightarrow N_2 + \beta^-$
 - \rightarrow electron

1910 - 1930 realized β spectrum in β decay is continuous!

How is this consistent w/ energy conservation??

Maybe energy is not conserved? (Bohr)

Pauli, Fermi: neutrinos!

$N_1 \rightarrow N_2 + \beta^- + \nu < \text{(neutral)}$

then β energy not unique
\[n \rightarrow p + e + \bar{\nu}_e \]

1933 Fermi landmark paper on weak interactions & \(p \)-decay
- also established formalism for matter creation/decay
 - “Fermi golden rule”
- established scale of weak interactions
- \(G_F \) \(\bar{p} \bar{e} \nu_e \) operator mediates \(p \)-decay \(\rightarrow \) beginning of effective field theory

“Fermi constant” \(G_F \sim \left(\frac{1}{100 \text{ GeV}} \right)^2 \)
- scale of weak interactions \(\sim 100 \text{ GeV} \)
- (compare \(q \rightarrow q \) \(\rightarrow 100 \text{ MeV} \)
- mass of \(W \) & \(Z \) bosons that mediate weak force.
SM: \(G \& M \rightarrow \text{QCD} \)

U(1) gauge theory

Strong nuclear force \(\rightarrow \text{QCD} \)

SU(3) gauge theory

Radioactive decay \(\rightarrow \text{QCD} \)

Electroweak theory

SU(2) \& U(1) gauge theory

\(\downarrow \) Spontaneous symmetry

Quarks & leptons

Higgs boson

+ Flavor

Cosmic rays \(\rightarrow \) discovery of muon \(10 \text{ MeV} \)

Very heavy cousin of electron! "Who ordered that?"

Unstable: \(\mu \rightarrow e + \nu_e + \bar{\nu}_e \) (like p decay)
Later \(\tau \) \(m_\tau = 1.7 \text{ GeV} \) even heavier & more unstable version of electron

\[
\begin{pmatrix}
e^\tau \\
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
\]

same interactions under SM.

Also quarks

\[
\begin{pmatrix}
d \\
\upsilon \\
s \\
t
\end{pmatrix}
\]

also 3 generations!

why ?? \(\rightarrow \) nobody knows

one special thing about 3 generations \(\text{vs 2} \) \(\rightarrow \) starting \(\frac{1}{3} \),

CKM matrix observed in Nature \(\rightarrow \) CP violation is allowed.
Unit I: Introduction of AEO

1. E&M as a relativistic Lagrangian field theory (classical)

Recall:
\[\nabla \cdot B = 0 \]
\[\nabla \times E + \frac{\partial B}{\partial t} = 0 \]
\[\nabla \cdot E = 0 \]
\[\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = 0 \]

Maxwell's eqns in vacuum

\[A \text{ potential formalism} \]
\[(\phi, \mathbf{A}) \]
\[\mathbf{B} = \nabla \times \mathbf{A} \]
\[\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \]

Gauge invariance:
\[\mathbf{E} & \mathbf{B} \text{ unchanged for any } \phi \]
\[\mathbf{A} \rightarrow \mathbf{A} - \nabla \phi \]
\[\phi \rightarrow \phi - \phi \]
Comment about "gauge symmetry" \rightarrow "local symmetry" $\partial (x,t)$

different than ordinary "global symmetry"

- physical laws are unchanged
- global symmetry transformation relates distinct states of system

redundancy of description

physical laws unchanged + states related by gauge symmetry are identified

\leftarrow there is no circle "mod out" by gauge transformations but not global symmetries.
Maxwell \rightarrow \text{pot'l}

\text{Coulomb gauge } \quad \nabla \cdot E = 0 \quad \rightarrow \quad \nabla^2 A - \frac{\partial}{\partial t} A = 0.

\text{plan wave eqn}
\quad \vec{A} \sim e^{-i(k \cdot x - \omega t)}
\quad \text{massless, relativistic dispersion relation}

A_{\mu} = (-\mathbf{E}, \mathbf{A})

A_{\mu} \rightarrow A_{\mu} - \partial_{\mu} y \quad \text{gauge transf.}

F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \quad \text{gauge invariant field strength.}

\text{check:} \quad F_{0i} = \nabla_i A_0 - \nabla_0 A_i = -\varepsilon_i \quad F_{ij} = \frac{\partial A_j - \partial A_i}{\varepsilon_{ijk}} = \varepsilon_{ijk} B_k
(HW1) check: Maxwell's eqns \[\nabla^2 F_{\mu\nu} = 0 \]

Reformulate w/ Lagrangians & Action principle

\[S = \int dt \ L = \int dt \ d^3 x \ L \]

\[= \int d^4 x \ L \]

for Maxwell they

\[\text{want } L : \text{Lorentz+gauge} \]

\[\text{require } L \text{ to be Lorentz invar+\textcircled{4} if w+4 system to be Lorentz invar+\textcircled{4}.} \]
unique object Lorentz & gauge in 4
quadratic in A_m
\[L = \frac{1}{4} \varepsilon_{mn} F^m \cdot F^n \]

\[\varepsilon \equiv \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \]

\(L = (\partial A^\mu - \partial^\nu A^\nu)(\partial A^\nu - \partial^\mu A^\mu) \quad \text{total derivative} \)

\[\partial^\mu F^\mu = 0 \]

Equations of motion

\[\partial^\mu \left(\varepsilon^{\mu\nu} \frac{\partial}{\partial \partial A^\nu} \right) = 0 \]

\[\varepsilon^{\mu\nu} \partial \partial A^\nu = 0 \]

\(\partial^\nu A^\nu = \varepsilon^\nu(\partial A^\nu) \; \text{set to zero w/ gauge choice} \)

\(\text{e.g., C. gauge or Lorentz gauge} \)
\[\Box A_\nu \equiv \nabla_\nu A_\nu = 0 \]

Lorentz in\textsuperscript{\textit{f}} wave equation

\[\frac{\partial^2}{\partial t^2} - \nabla^2 \]

“D'Alembertian operator”

another covariant derivative

that \(2\Box A_\nu = 0 \equiv \text{Maxwell’s eqns.} \)