Kitaev Spin Liquids

Context

Theory

Several examples where QSLs (quantum spin liquids) are rigorously known to be the ground states

Lack of suitable theoretical methods

- Analytic large S, large N calculations "biased"
 - misses out on crucial aspect: entanglement
- Computational methods \Rightarrow need very high precision \Rightarrow ground-state nature
Kitaev Spin Liquid

Exactly Soluble \(\longrightarrow \) (decomposition of Majorana fermions)

\[\uparrow \]

we will discuss them shortly

Fractionalization of spin can be "traced"

\[\downarrow \]

(Majorana) fermion degree of freedom

static \(Z_2 \)
gauge field with a \(\Delta \)

KSL in ground state flux sector

Transitions out of ASL

\[\uparrow \]

"confinement" of Majorana fermions
- Experimental Realizations
 Crucial Aspects
 - Large Spin-Orbit Coupling
 - Bonding Geometry
- Link to Toric Code (periodic boundary conditions)
 - Topological Order
 - Simple Topological Quantum Error Correcting Code
- Local errors, thermal noise and decoherence are the main obstacles in the realization of a quantum computer
- Topological properties (nonlocal) may be a way to address this
in physical systems

- Qubits encoded in topological states may be robust to local perturbations

- Quantum Computing

- Quantum Magnetism

- Kitaev Spin Liquid

- Strongly Correlated Electrons

- Solid State Chemistry

Quite impressive for a "toy model"!