Lab 3a: Distribution functions

Outline

- Histogram
- Basic concepts
- Gaussian (normal) distribution
 - -Limiting distribution
- Poisson distribution
 - -Counting measurements

Random: small Systematic: small

Random: large Systematic: small

Histogram and bin

A **histogram** is a graphical representation of the distribution of data. It is a representation of tabulated frequencies, shown as adjacent rectangles (**bin**s), with an area equal to the frequency of the observations in the interval.

Bin start = $x_c - w/2$ Bin end = $x_c + w/2$

Next Bin center =
$$x_c + w$$

Choose bin width properly

There is no "best" bin width. One commonly used "rule" (of # of bins) is:

of bins = $\sqrt{\#}$ of data points

Random variables

For a random variable x (e.g. measurements of a quantity), each measured value x_k occurs n_k times in N measurements.

Probability distribution of *N* measurements The fraction of *N* measurements that gave the result x_k (i.e. probability): $F_k = \frac{n_k}{N}$

Normalization

$$\sum_{k} F_{k} = 1 \quad \left[N = \sum_{k} n_{k} \right]$$

 F_k : the normalized probability of *x*.

The mean of
$$x_k$$
: $\overline{x} = \sum_k x_k F_k$

True value and variance

For a random variable x (e.g. measurements of a quantity), the mean and variance of the limiting (a.k.a. parent) distribution $(N \rightarrow \infty)$:

the true value:
$$X = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i$$

the true variance: $\sigma^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} (x_i - X)^2$

Limiting distributions

In the limit of $N \rightarrow \infty$, it is believed every measurement has a limiting distribution, which is often the Gaussian distribution. Also, discrete distributions approach a continuous function called probability distribution function (PDF):

 $F_k \rightarrow f(x) dx$ The probability that any one measurement will give an answer between x and x+dx is:

$$p(x) = f(x)dx$$

Probability distribution function (PDF)

Normalization

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

The mean of *x*:

$$\overline{x} = \int_{-\infty}^{\infty} x f(x) dx$$

The variance:

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - X)^{2} f(x) dx$$

http://en.wikipedia.org/wiki/Normal_distribution

Finite number of measurements

In reality, the number of measurements is finite, i.e. $N \neq \infty$. The average value is the best estimation of true mean value, while the standard deviation is the best estimation of true variance.

$$X \approx \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\sigma^2 \approx \sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

These estimations will be "justified" in the next lecture.

The Gaussian (normal) distribution

The Gaussian (normal) distribution

$$G_{X,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-X)^2/2\sigma^2}$$

The standard deviation: σ

Prob (within
$$\pm \sigma$$
) = $\int_{X-\sigma}^{X+\sigma} G_{X,\sigma}(x) dx \approx 0.682$
Prob (within $\pm 2\sigma$) = $\int_{X-2\sigma}^{X+2\sigma} G_{X,\sigma}(x) dx \approx 0.954$
Prob (within $\pm 3\sigma$) = $\int_{X-3\sigma}^{X+3\sigma} G_{X,\sigma}(x) dx \approx 0.997$

The Poisson distribution (I)

- Events with constant rate / probability. e.g.: radioactive decay, birth count, etc.
- A limiting case of binomial distribution

The probability of N counts in a definite interval:

0.4

•**●—** u=1

20

The Poisson distribution (II)

* The origin of "square-root rule" for counting experiments.

The Poisson distribution (III)

0.4

0.3

0.2

0.1

0.0

0

Б Д - u=1

u=10

μ=4.5

15

10

Ν

5

20

At the limit $\mu \gg 1$ The Poisson distribution quickly approach the Gaussian distribution.

the mean: $\overline{N} = \mu$

the standard deviation: $\sigma_N = \sqrt{\mu}$

$$P_{\mu}(N) = e^{-\mu} \frac{\mu^{N}}{N!} \xrightarrow{\mu \gg 1} \frac{1}{\sqrt{2\pi\mu}} e^{-\frac{(N-\mu)^{2}}{2\mu}}$$

Lab 3a: Radioactive decay

Decay rate of 137 Cs is approximately a constant. The measured rate (*R*) depends on the distance between source and detector. (Why?)

Each run of experiments has *n* consecutive intervals (Δt) . The decay count N_i (i = 1, ..., n) at each interval follow Poisson distribution.

The average decay rate: $R = \frac{\overline{N}}{\Delta t}$ Standard deviation: $\sigma_R = \frac{\sigma_{\overline{N}}}{\Delta t} = \frac{\sigma_N / \sqrt{n}}{\Delta t}$