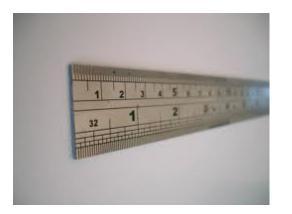
Lab 2: Wave length of light

PURPOSE

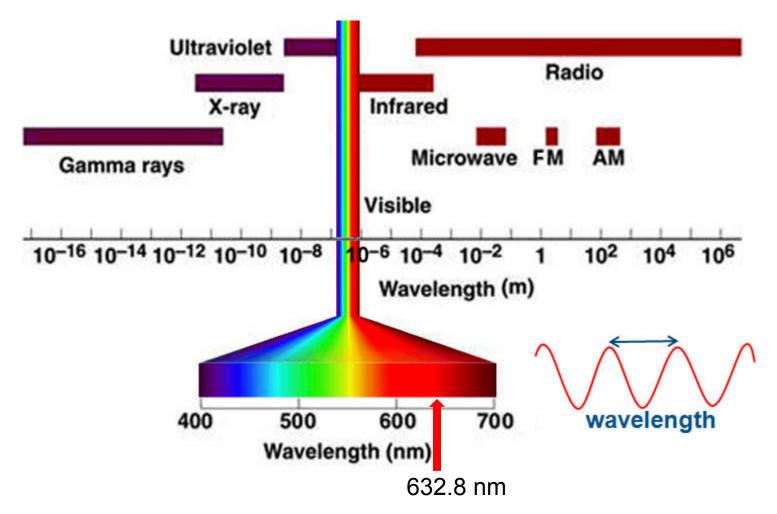
The purpose of this lab is to measure the wavelength of light from a He-Ne Laser using a steel ruler and a meter stick.





What is light?

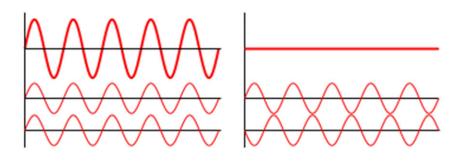
Wavelength of light (E&M wave)



How to measure such a small length with a steel ruler and a meter stick?

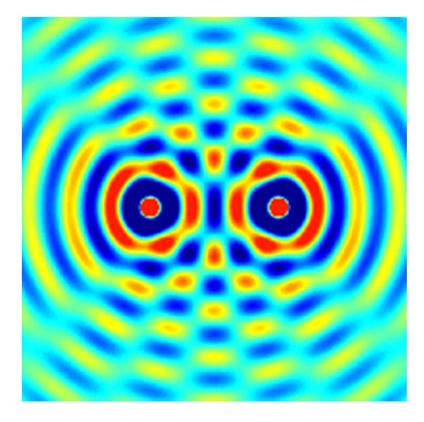
Interference of waves

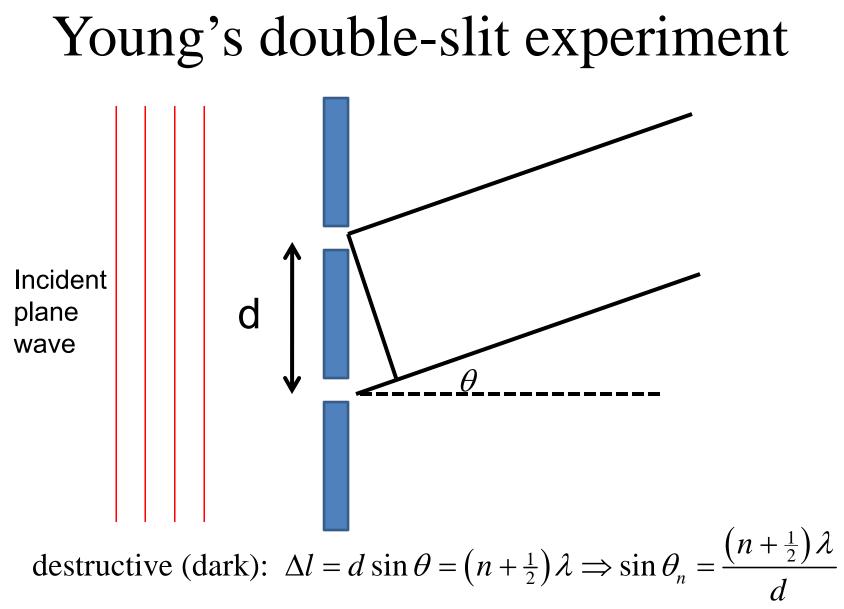
Interference: superposition of 2 propagating waves with the same frequency.



constructive	destructive
$\Delta l = n\lambda$	$\Delta l = \left(n + \frac{1}{2}\right)\lambda$

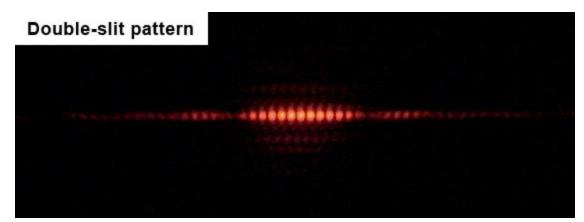
Intensity=max. Intensity=0





what is the largest possible value of θ_n ?

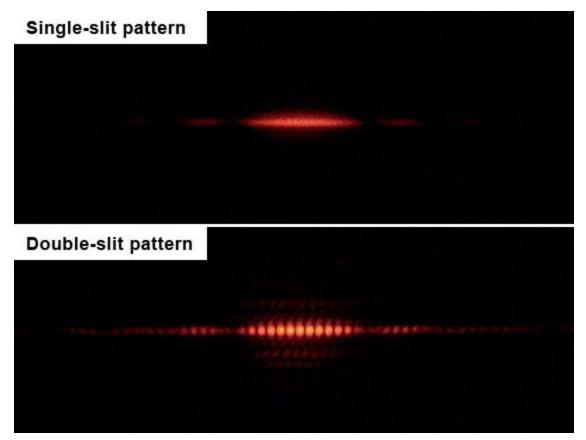
Experimental observation



$$\sin \theta_n = \frac{\left(n + \frac{1}{2}\right)\lambda}{d}$$

http://en.wikipedia.org/

Experimental observation

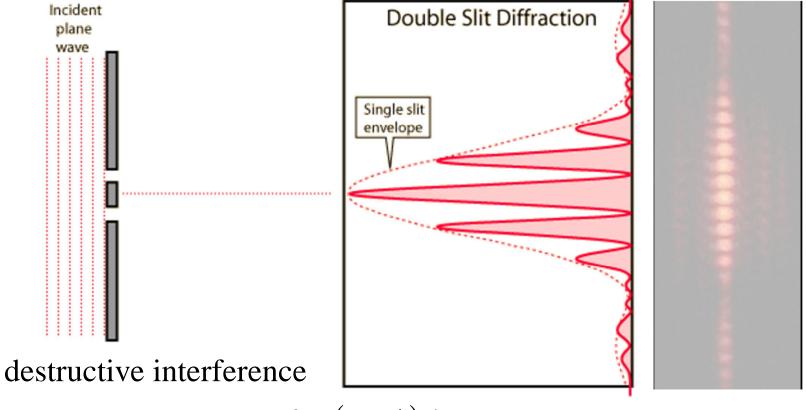


$$\sin \theta_n = \frac{\left(n + \frac{1}{2}\right)\lambda}{d}$$

http://en.wikipedia.org/

Double-slit diffraction

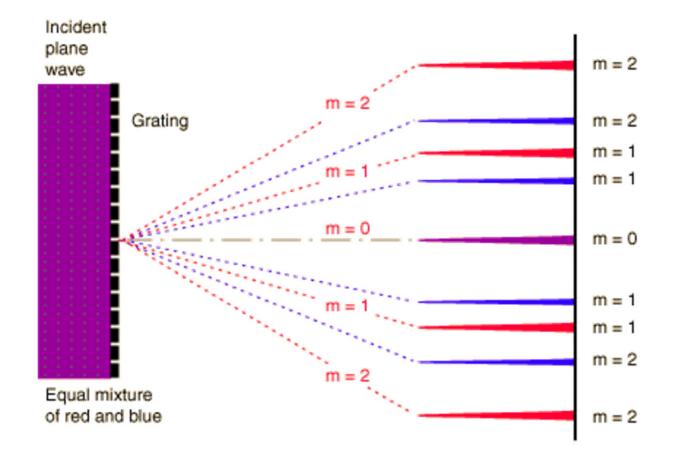
Diffraction (of 1 slit) "×" Interference (of 2 slits)



double slit: $\Delta l = d \sin \theta = (n + \frac{1}{2})\lambda$

single slit:
$$\Delta l = \frac{w}{2} \sin \theta = (n + \frac{1}{2})\lambda$$

Diffraction grating: a lot of slits

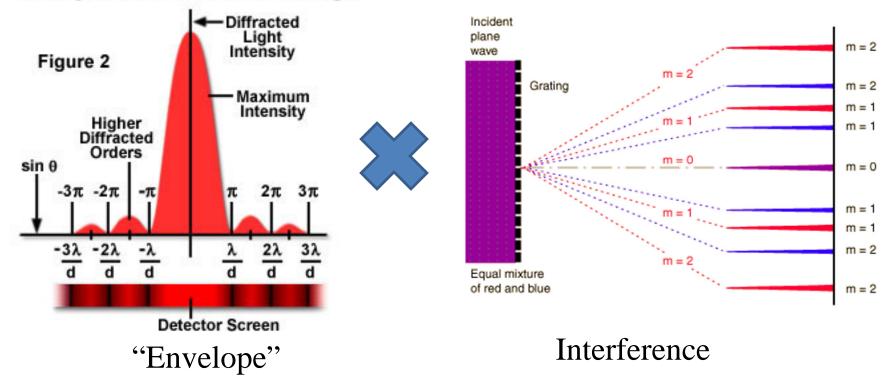


constructive interference: $\Delta l = d \sin \theta_m = m\lambda$ Same as the double-slit case

Diffraction grating: a lot of slits

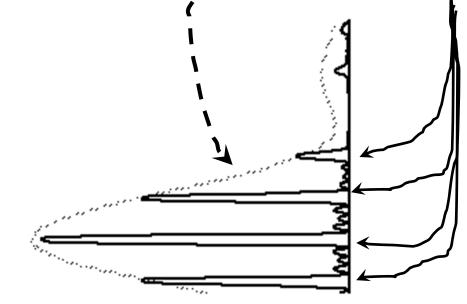
Pattern of diffraction grating: Diffraction "×" Interference

Intensity Distribution of Diffracted Light

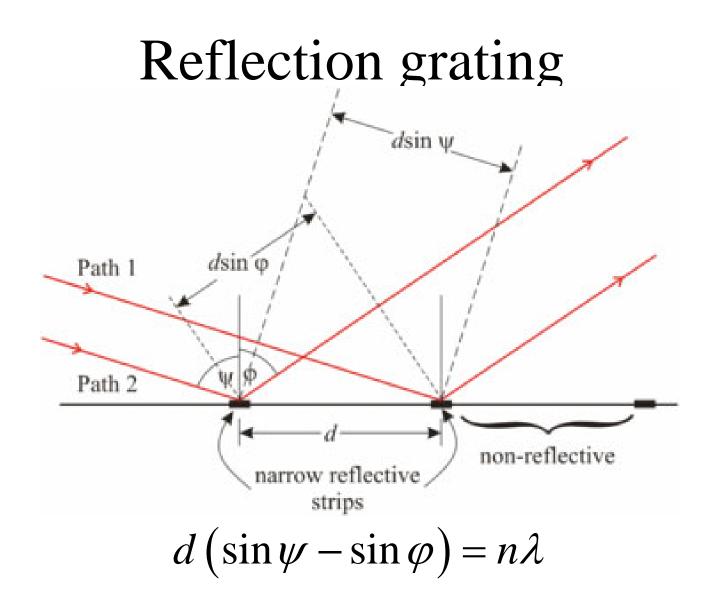


Diffraction grating: a lot of slits

Diffraction grating: Diffraction "×" Interference

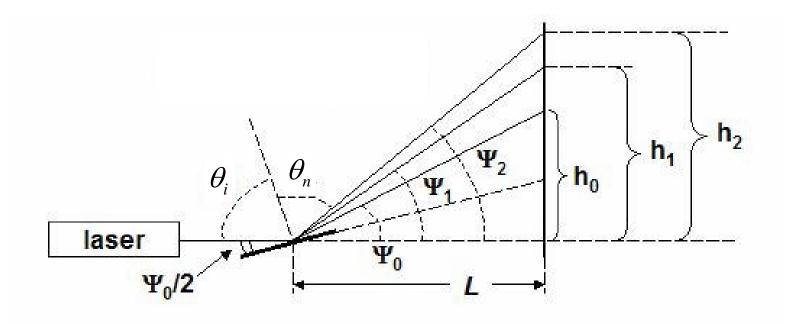


http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/gratint.html



D Nikolić and Lj Nešić, Eur. J. Phys. 33 1677 (2012).

Lab 2 (reflection grating)



$$\theta_i = \frac{\pi}{2} - \frac{\Psi_0}{2} \qquad \theta_n = \frac{\pi}{2} - \Psi_n + \frac{\Psi_0}{2} \qquad \tan \Psi_0 = \frac{h_0}{L} \qquad \tan \Psi_n = \frac{h_n}{L}$$

 $d\left(\sin\theta_i - \sin\theta_n\right) = n\lambda$

Some approximations

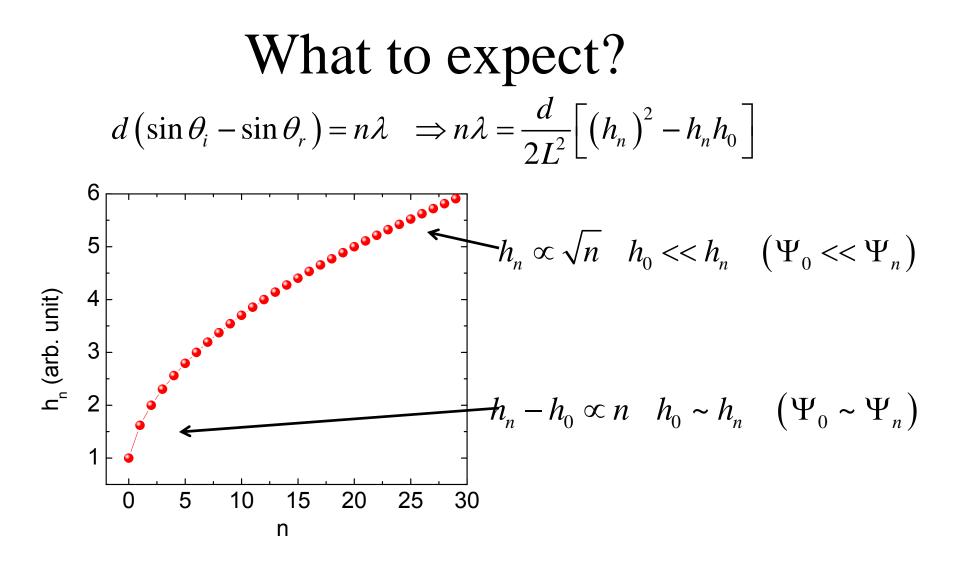
$$n\lambda = d\left[\sin\left(\frac{\pi}{2} - \frac{\Psi_0}{2}\right) - \sin\left(\frac{\pi}{2} - \Psi_n + \frac{\Psi_0}{2}\right)\right] \qquad \Rightarrow \quad n\lambda = d\left[\cos\left(\frac{\Psi_0}{2}\right) - \cos\left(\Psi_n - \frac{\Psi_0}{2}\right)\right]$$

Applying Taylor expansion: $\cos x \approx 1 - \frac{x^2}{2}$

$$n\lambda \approx \frac{d}{2} \left[\left(\Psi_n - \frac{\Psi_0}{2} \right)^2 - \left(\frac{\Psi_0}{2} \right)^2 \right] = \frac{d}{2} \Psi_n \left(\Psi_n - \Psi_0 \right)$$

Applying Taylor expansion once more: $\tan x \approx x$

$$n\lambda = \frac{d}{2}\tan\Psi_n\left(\tan\Psi_n - \tan\Psi_0\right) = \frac{d}{2}\frac{h_n}{L}\left(\frac{h_n}{L} - \frac{h_0}{L}\right) = \frac{d}{2L^2}h_n\left(h_n - h_0\right)$$
$$n\lambda = \frac{d}{2L^2}\left[\left(h_n\right)^2 - h_nh_0\right]$$



$$\lambda = 632.8 \text{ nm} = 6.328 \times 10^{-7} \text{m}, d = \frac{1}{32} \text{inch} = 0.794 \text{ mm} = 7.94 \times 10^{-4} \text{m}$$

Some estimations

How big should the angles Ψ_n be?

$$n\lambda \approx \frac{d}{2} \Psi_n \left(\Psi_n - \Psi_0 \right) \longrightarrow n\lambda \approx \frac{d}{2} \Psi_n^2$$
$$\lambda \approx 0.001d \qquad \longrightarrow \qquad \Psi_n \approx \sqrt{0.001n} \approx 0.03\sqrt{n} = 1.8^\circ \times \sqrt{n}$$

How precise should these angles θ_n be? i.e. fractional error?

How to realize such a precision of angle measurements?

How about systematic errors?