f-sum rule

The retarded current-current correlation function is defined by

\begin{displaymath}
\Pi_{jj}^R (\omega ) = \langle \langle j,j \rangle \rangle (...
...\rangle \right\vert
^2 \frac{1}{\omega + E_n - E_m + i \eta }.
\end{displaymath} (1)

The corresponding spectral function is
$\displaystyle \rho_{jj} (\omega )$ $\textstyle =$ $\displaystyle - \frac{1}{\pi} {\rm Im} \Pi_{jj}^R (\omega )$  
  $\textstyle =$ $\displaystyle \frac{1}{Z} \sum_{nm} \left( e^{- \beta E_n} - e^{- \beta E_m} \r...
...ert
\langle n \vert j \vert m \rangle \right\vert^2 \delta (\omega + E_n - E_m)$  
  $\textstyle =$ $\displaystyle \int_{- \infty}^{\infty} \frac{dt}{2 \pi} e^{i \omega t} \langle [ j(t) , j] \rangle .$ (2)

In terms of the spectral function, the real part of the conductivity (which is what enters the f-sum rule) is given by,
\begin{displaymath}
\sigma (\omega ) = - \frac{1}{V} \frac{1}{\omega } {\rm Im} \Pi_{jj}^R (\omega )
= \frac{\pi}{V} \rho_{jj} (\omega ).
\end{displaymath} (3)

We define the polarization operator $P$ such that $\frac{\partial P}{\partial t} = j$. Then,
$\displaystyle \rho_{jj} (\omega )$ $\textstyle =$ $\displaystyle \int_{- \infty}^{\infty} \frac{dt}{2 \pi} e^{i \omega t}
\langle [ \frac{\partial P}{\partial t}, j ] \rangle$  
  $\textstyle =$ $\displaystyle - i \omega \int_{- \infty}^{\infty} \frac{dt}{2 \pi} e^{i \omega t} \langle [ P(t),
j ] \rangle$  
  $\textstyle =$ $\displaystyle -i \omega \rho_{Pj} (\omega ),$ (4)

where
\begin{displaymath}
\rho_{Pj} (\omega ) = \int_{- \infty}^{\infty} \frac{dt}{2 \pi} e^{i \omega t} \langle
[ P(t), j ] \rangle .
\end{displaymath} (5)

Then,
$\displaystyle \int_{- \infty}^{\infty} d \omega \sigma (\omega )$ $\textstyle =$ $\displaystyle - \frac{\pi i}{V} \int_{- \infty}
^{\infty} d \omega \rho_{Pj} (\omega )$  
  $\textstyle =$ $\displaystyle - \frac{\pi i}{V} \langle [P(0), j ] \rangle .$ (6)

The current operator is given by $j = \sum_{i = 1}^N (e p_i)/m$, where $p_i$ is the momentum of the i-th particle. The polarization operator is given by $P = \sum_{i = 1}^N e r_i$, where $r_i$ is the position of the i-th particle. Since,

\begin{displaymath}[P, j]= \frac{e^2}{m} \sum_{ij} [ r_i , p_j] = \frac{N e^2 i}{m},
\end{displaymath}

(in units where $\hbar = 1$), we finally get the f-sum rule as
\begin{displaymath}
\int_{- \infty}^{\infty} \frac{d \omega } {\pi} \sigma (\omega ) = \frac{n e^2}{m},
\end{displaymath} (7)

where $n = N/V$ is the density of particles.