The Hubbard model in the atomic limit is given by,

\begin{displaymath}
{\mathcal H}= -\mu \sum_{\sigma } f^{\dagger}_{\sigma}f_{\si...
...row } f_{\uparrow } f^{\dagger}_{\downarrow } f_{\downarrow }.
\end{displaymath} (1)

The system has four possible states, namely $\vert {\,\rangle }$ (no particle), $\vert \uparrow
{\,\rangle }$ (up electron), $\vert \downarrow {\,\rangle }$ (down electron), and $ \vert \uparrow \downarrow {\,\rangle }$ (doubly occopied). The grand canonical partition function for the system is given by,
$\displaystyle Z$ $\textstyle =$ $\displaystyle {\rm Tr} e^{- \beta {\mathcal H}}$  
  $\textstyle =$ $\displaystyle 1 + 2 e^{\beta \mu } + e^{\beta (2 \mu - U)}.$ (2)

  1. To calculate the retarded Green's function and the spectral function we will first calculate the temperature Green's function and then take appropriate analytic continuation.

    The temperature Green's function is defined as,

    $\displaystyle g_{\sigma }(\tau )$ $\textstyle =$ $\displaystyle - {\langle\, }T_{\tau } f_{\sigma}(\tau ) f^{\dagger}_{\sigma}(0) {\,\rangle }$  
      $\textstyle =$ $\displaystyle - \frac{1}{Z} {\rm Tr} \left( e^{-\beta {\mathcal H}} T_{\tau } f_{\sigma}(\tau ) f^{\dagger}_{\sigma}(0)
\right).$  

    The Fourier transform in terms of fermionic Matsubara frequency $\omega _n =
(2n+1) \pi/\beta $, is
    $\displaystyle g_{\sigma } (i \omega _n)$ $\textstyle =$ $\displaystyle \int_{0}^{\beta } d \tau g_{\sigma }(\tau ) e^{i \omega _n \tau }$  
      $\textstyle =$ $\displaystyle - \frac{1}{Z} \int_{0}^{\beta } d \tau e^{i \omega _n \tau } \sum...
...thcal H}} f_{\sigma}(\tau ) f^{\dagger}_{\sigma}(0) \right\vert n {\,\rangle }.$ (3)

    Since,
    $\displaystyle \sum_n {\langle\, }n \left\vert e^{-\beta {\mathcal H}} f_{\sigma}(\tau ) f^{\dagger}_{\sigma}(0) \right\vert n {\,\rangle }$ $\textstyle =$ $\displaystyle \sum_n {\langle\, }n \left\vert e^{-\beta {\mathcal H}} e^{\tau {...
...{\sigma}e^{- \tau {\mathcal H}} f^{\dagger}_{\sigma}
\right\vert n {\,\rangle }$  
      $\textstyle =$ $\displaystyle {\langle\, }0 \left\vert e^{-\beta {\mathcal H}} e^{\tau {\mathca...
...- \tau {\mathcal H}} f^{\dagger}_{\sigma}\right\vert
\bar{\sigma } {\,\rangle }$  
      $\textstyle =$ $\displaystyle e^{\tau \mu } + e^{\beta \mu + \tau (\mu - U)},$ (4)

    we get from equations (3) and (4),
    \begin{displaymath}
g_{\sigma } (i \omega _n) = \frac{1}{Z} \left\{ \frac{e^{\be...
... \mu - U)} + e^{\beta \mu }}{ i \omega _n + \mu - U} \right\}.
\end{displaymath} (5)

    Then, after the analytic continuation $i \omega _n \rightarrow \omega + i\eta $, we have,
    \begin{displaymath}
G^R_{\sigma } (\omega ) = \frac{1}{Z} \left\{ \frac{e^{\beta...
... - U)} + e^{\beta \mu }}{ \omega + \mu - U + i\eta } \right\}.
\end{displaymath} (6)

    The spectral function is given by,

    $\displaystyle A_{\sigma }(\omega )$ $\textstyle =$ $\displaystyle - \frac{1}{\pi} {\rm Im} G^R_{\sigma } (\omega )$  
      $\textstyle =$ $\displaystyle \left(\frac{e^{\beta \mu } +1}{Z} \right) \delta ( \omega + \mu )...
...c{
e^{\beta (2 \mu - U)} + e^{\beta \mu }}{Z} \right) \delta (\omega + \mu -U).$ (7)

    In the non-interacting case the spectral function has a single pole with weight one, i.e, $A_{\sigma }(\omega ) = \delta ( \omega + \mu )$. The effect of interaction is to produce two poles with finite energy gap $U$. The total spectral weight, which is always one, is shared between the two poles.
  2. The Hubbard operators are defined as
    $\displaystyle X_{\uparrow 0}$ $\textstyle \equiv$ $\displaystyle f^{\dagger}_{\uparrow } (1-n_{\downarrow }) = \vert \uparrow {\,\rangle }{\langle\, }0 \vert$  
    $\displaystyle X_{d \downarrow }$ $\textstyle \equiv$ $\displaystyle f^{\dagger}_{\uparrow } n_{\downarrow } = \vert \uparrow \downarrow {\,\rangle }{\langle\, }\downarrow \vert.$ (8)

    Their conjugate operators are repectively,
    $\displaystyle X_{0 \uparrow }$ $\textstyle \equiv$ $\displaystyle f_{\uparrow } (1-n_{\downarrow }) = \vert 0 {\,\rangle }{\langle\, }\uparrow \vert$  
    $\displaystyle X_{\downarrow d}$ $\textstyle \equiv$ $\displaystyle f_{\uparrow } n_{\downarrow } = \vert \downarrow {\,\rangle }{\langle\, }\uparrow \downarrow \vert.$ (9)

    Now, it is easy to see that

    \begin{displaymath}
f^{\dagger}_{\uparrow } = X_{\uparrow 0} +X_{d \downarrow } ...
... \uparrow \downarrow {\,\rangle }{\langle\, }\downarrow \vert.
\end{displaymath} (10)

  3. Similarly, we have,
    \begin{displaymath}
f^{\dagger}_{\downarrow }=X_{\downarrow 0} +X_{d \uparrow }=...
...rt \uparrow \downarrow {\,\rangle }{\langle\, }\uparrow \vert.
\end{displaymath} (11)

  4. The anticommutator
    $\displaystyle \left\{ X_{\uparrow 0}, X_{0 \uparrow } \right\}$ $\textstyle =$ $\displaystyle \left\{ f^{\dagger}_{\uparrow }(1- n_{\downarrow }),
(1- n_{\downarrow })f_{\uparrow } \right\}$  
      $\textstyle =$ $\displaystyle (1- n_{\downarrow })^2 \left\{ f^{\dagger}_{\uparrow },f_{\uparrow } \right\}$  
      $\textstyle =$ $\displaystyle (1- n_{\downarrow }),$ (12)

    since $(1- n_{\downarrow })$ is either zero or one. Thus,
    \begin{displaymath}
{\langle\, }\{ X_{\uparrow 0}, X_{0 \uparrow }\}{\,\rangle }...
...\, }n_{\downarrow } {\,\rangle }
=\frac{e^{\beta \mu } +1}{Z},
\end{displaymath} (13)

    is the average occupation of a $\downarrow $-hole. We also note, from equation (7), that this is also the spectral weight for the pole corresponding to single occupancy.

    Similarly, the anticommutator $\left\{ X_{d \downarrow }, X_{\downarrow d} \right\}
= n_{\downarrow }$. Thus,

    \begin{displaymath}
{\langle\, }\{X_{d \downarrow }, X_{\downarrow d} \} {\,\ran...
...\,\rangle }
=\frac{e^{\beta (2 \mu - U)} + e^{\beta \mu }}{Z},
\end{displaymath} (14)

    is the average occupation of a $\downarrow $-electron. Again from equation (7) we note that this is the spectral weight for the pole corresponding to double occupancy.

  5. To evaluate the commutator $[{\mathcal H}, X_{0\uparrow }]$, it is enough to consider the state $\vert \uparrow
{\,\rangle }$, since all other states give zero when acted on by $X_{0\uparrow }$. We have $[{\mathcal H}, X_{0\uparrow }] \vert \uparrow {\,\rangle }= \mu \vert 0 {\,\rangle }= \mu X_{0\uparrow }
\vert \uparrow {\,\rangle }$. Thus, $[{\mathcal H}, X_{0\uparrow }] = \mu X_{0\uparrow }$, and
    \begin{displaymath}
{\langle\, }\left\{ X_{\uparrow 0}, \left[ {\mathcal H}, X_{...
...\mu \left(1 - {\langle\, }n_{\downarrow } {\,\rangle }\right).
\end{displaymath} (15)

    Comparing with equation (7) we find that the energy coefficient in the above expression gives the pole for the singly occupied state.

    Similarly, we can show that $[{\mathcal H}, X_{\downarrow d}] = (\mu - U) X_{\downarrow d}$, and

    \begin{displaymath}
{\langle\, }\left\{ X_{d \downarrow }, \left[ {\mathcal H}, ...
...eft( \mu - U \right) {\langle\, }n_{\downarrow } {\,\rangle }.
\end{displaymath} (16)

    Here the energy coefficient gives the pole for the doubly occupied state.

  6. Comment

    To put parts (1), (4) and (5) into proper perspective we will re-evaluate the retarded Green's function using the Hubbard operators. From definition,

    $\displaystyle G^R_{\sigma } (t)$ $\textstyle =$ $\displaystyle -i \theta (t) {\langle\, }\left\{ f_{\sigma}(t), f^{\dagger}_{\sigma}(0) \right\} {\,\rangle }$  
      $\textstyle =$ $\displaystyle -i \theta (t) {\langle\, }\left\{ X_{0 \sigma }(t) + X_{\bar{\sigma}d}(t), X_{\sigma 0}(0) + X_{d \bar{\sigma}}
(0) \right\} {\,\rangle }$  
      $\textstyle =$ $\displaystyle -i \theta (t) \left[ {\langle\, }\left\{X_{0 \sigma }(t), X_{\sig...
...eft\{ X_{\bar{\sigma}d}(t), X_{d \bar{\sigma}}(0) \right\} {\,\rangle }\right].$  

    Here $\bar{\sigma}$ is the spin opposite to $\sigma $. In the last line above, we have used the fact that cross-terms are zero. Now, from our discussion in part (5), we know that $[{\mathcal H}, X_{0\sigma }] = \mu X_{0\sigma }$ and that $[{\mathcal H}, X_{\bar{\sigma}d}] =
(\mu - U) X_{\bar{\sigma}d}$. Then, $X_{0 \sigma }(t) = e^{i \mu t}X_{0 \sigma }(0)$, and $X_{\bar{\sigma}d}(t)= e^{i(\mu - U)t}X_{\bar{\sigma}d}(0)$. We can write,

    \begin{displaymath}
G^R_{\sigma } (t)= -i \theta (t) \left[ e^{i \mu t} {\langle...
...ar{\sigma}d}, X_{d \bar{\sigma}}\right\} {\,\rangle }
\right].
\end{displaymath}

    From our discussion in part (4) we know that ${\langle\, }\{ X_{\sigma 0}, X_{0 \sigma }\}{\,\rangle }
= 1 - {\langle\, }n_{\bar{\sigma}} {\,\rangle }$ and that ${\langle\, }\{ X_{\bar{\sigma}d}, X_{d \bar{\sigma}} \} {\,\rangle }
={\langle\, }n_{\bar{\sigma}} {\,\rangle }$. So, finally we have,
    \begin{displaymath}
G^R_{\sigma } (t) = -i \theta (t) \left\{ (1 - {\langle\, }n...
...ngle\, }n_{\bar{\sigma}} {\,\rangle }e^{i(\mu - U)t} \right\}.
\end{displaymath} (17)

    Taking the Fourier transform of the above equation we get,
    \begin{displaymath}
G^R_{\sigma } (\omega ) = \frac{1 - {\langle\, }n_{\bar{\sig...
...\, }
n_{\bar{\sigma}} {\,\rangle }}{\omega + \mu -U + i\eta }.
\end{displaymath} (18)

    This is nothing but equation (6) in a more compact form.