Screening of an Impurity Charge: Friedel Oscillations

We want to study the response of an electron gas to a static impurity with charge $Ze$. At the level of random phase approximation, the change in the electron distribution induced by the impurity charge is given by

\begin{displaymath}
\delta \rho(r) = - \frac{Ze}{2 \pi^2} \frac{1}{r} \int_0^{\i...
...)
\frac{q_{TF}^2 \pi_0 (q/k_F)}{q^2 + q_{TF}^2 \pi_0 (q/k_F)},
\end{displaymath} (1)

where $q_{TF}$ is the Thomas-Fermi screening length, and $\pi_0(x)$ is the Lindhard function for density-density correlation and is given by
\begin{displaymath}
\pi_0 (x) = \frac{1}{2} - \frac{1}{2x} \left( 1- \frac{x^2}{4} \right) \log
\left\vert \frac{1- x/2}{1 + x/2} \right\vert.
\end{displaymath} (2)

We note that the above function is non-analytic at $x=2$. This is due to low energy electron-hole excitations in a degenerate electron gas at wave-vector $2 k_F$. These processes are important in screening the impurity charge, and they give rise to the Friedel oscillations. The regular part of the integral in equation (1) gives the usual Thomas-Fermi screening, which has the asymptotic ( $r \rightarrow \infty $) form $\delta \rho (r) \sim - Ze q_{TF}^2 (4 \pi r)^{-1} e^{- q_{TF}r}$. In this exercise we will calculate only the irregular part of the integral in equation (1) which shows the Friedel oscillations. After two partial integrals we get
$\displaystyle \delta \rho (r)$ $\textstyle =$ $\displaystyle \frac{Ze}{2 \pi^2} \frac{1}{r^3} \int_0^{\infty } dq \sin(qr)
\frac{d^2}{d q^2} \left[ \frac{q q_{TF}^2 \pi_0}{q^2 + q_{TF}^2 \pi_0} \right]$  
  $\textstyle =$ $\displaystyle - \frac{Ze}{2 \pi^2} \frac{1}{r^3} \int_0^{\infty } dq \sin(qr)
\frac{d^2}{d q^2} \left[ \frac{q^3}{q^2 + q_{TF}^2 \pi_0 (q/k_F)} \right].$ (3)

We will keep track of the most singular term which is

\begin{displaymath}
\frac{d^2}{d q^2} \left[ \frac{q^3}{q^2 + q_{TF}^2 \pi_0 (q/...
...)^2}{(q^2 + q_{TF}^2 \pi_0)^2} \pi_0^{\prime \prime }
(q/k_F),
\end{displaymath}

with

\begin{displaymath}
\pi_0^{\prime \prime } (x) \approx - \frac{1}{8} P \frac{1}{1- x/2}
\end{displaymath}

around $x=2$. Close to $q = 2 k_F$ we get,
$\displaystyle \delta \rho (r)$ $\textstyle \approx$ $\displaystyle - \left( \frac{Ze}{2 \pi^2} \right) \left(
\frac{q_{TF}^2/k_F^3}{...
...
\int_{2 k_F- \Lambda }^{2 k_F
+ \Lambda } dq \sin (qr) P \frac{1}{1 - q/2 k_F}$  
  $\textstyle =$ $\displaystyle \left( \frac{Ze}{\pi^2} \right) \left( \frac{q_{TF}^2/k_F^2}
{(4 ...
... \frac{1}{r^3} \int_{- \Lambda }^{\Lambda } dy \sin
(2 k_Fr + yr) P \frac{1}{y}$ (4)

where $\Lambda $ is a finite cut-off. The integrand $\sin (2 k_Fr) \cos (yr) /y$ drops out because it is odd over the range of integration. We also have
\begin{displaymath}
\lim_{r \rightarrow \infty } P \int_{- \Lambda }^{\Lambda } dy \sin (yr) \frac{1}{y}
= \pi
\end{displaymath} (5)

for any finite $\Lambda $. Using these results we get
\begin{displaymath}
\lim_{r \rightarrow \infty } \delta \rho (r) \approx \frac{Z...
...2/k_F^2}{(4 + q_{TF}^2/2k_F^2)^2} \frac{1}{r^3} \cos (2 k_Fr).
\end{displaymath} (6)