Solution to Exercise 16
We want to diagonalize the bosonic Hamiltonian

\begin{displaymath}
{\mathcal H}= \frac{1}{2} \left( \begin{array}{cc}
a^{\da...
...
\left( \begin{array}{c} a \\ a^{\dagger}\end{array} \right)
\end{displaymath}

by appropriate canonical transformation. Here $c$, $b$ are real and $c > b$. The operators obey bosonic commutation relation $[a, a^{\dagger}] = 1$. We consider a transformation of the form
\begin{displaymath}
\left( \begin{array}{c} a \\ a^{\dagger}\end{array} \right)...
...
\left( \begin{array}{c} c \\ c^{\dagger}\end{array} \right).
\end{displaymath} (1)

Inverting the above transformation we get $[ c , c^{\dagger}] = 1/ (u^2 - v^2)$. Since, the transformation has to be canonical, we get $u^2 - v^2 = 1$. This is satisfied by $u = \cosh \theta $ and $v = \sinh \theta $. Thus, the two unknown parameters have been reduced to one. We will choose this unknown $\theta $ such that the Hamiltonian is diagonal in terms of the $c, c^{\dagger}$ operators. From equation (1) we get
$\displaystyle {\mathcal H}$ $\textstyle =$ $\displaystyle \frac{1}{2} \left( \begin{array}{cc} c^{\dagger}& c \end{array} \...
...end{array} \right)
\left( \begin{array}{c} c \\  c^{\dagger}\end{array} \right)$  
  $\textstyle =$ $\displaystyle \frac{1}{2} \left( \begin{array}{cc} c^{\dagger}& c \end{array} \...
...nd{array} \right)
\left( \begin{array}{c} c \\  c^{\dagger}\end{array} \right).$ (2)

The value of $\theta $ that diagonalizes the Hamiltonian is given by $\tanh 2\theta
= - b/c$. Then, $\cosh 2\theta = c/\sqrt{c^2 - b^2}$ and $\sinh 2\theta = -b/ \sqrt{c^2 -
b^2}$. We get,
$\displaystyle {\mathcal H}$ $\textstyle =$ $\displaystyle \frac{1}{2} \left( \begin{array}{cc} c^{\dagger}& c \end{array} \...
...end{array} \right)
\left( \begin{array}{c} c \\  c^{\dagger}\end{array} \right)$  
  $\textstyle =$ $\displaystyle \hbar \omega \left( c^{\dagger}c + \frac{1}{2} \right).$ (3)

Thus, the spectrum is the usual harmonic oscillator spectrum with frequency $\hbar \omega = \sqrt{c^2 - b^2}$.