We want to find the differential equation satisfied by the operator $\tilde{U}(t, t_0)$, which is defined as

\begin{displaymath}
\tilde{U}(t,t_0) = \tilde{T}{\rm exp}\left[ -i \int_{t_0}^{t} {\mathcal H}(\tau ) d \tau \right].
\end{displaymath}

Here $\tilde{T}$ is the antichronological ordering operator defined as

\begin{displaymath}
\tilde{T}\left[ A(t_1) B(t_2) \right] = \left \{
\begin{arr...
..._1 < t_2) \\
B(t_2) A(t_1) & (t_1 > t_2).
\end{array} \right.
\end{displaymath}

We examine the time evolution of $\tilde{U}(t,0)$ by comparing it with $ \tilde{U}(t +
\delta t, 0)$. We have,

$\displaystyle \tilde{U}(t +\delta t, t_0)$ $\textstyle =$ $\displaystyle \tilde{T}{\rm exp} \left[ -i \int_{t_0}^{t} {\mathcal H}(\tau ) d \tau
-i \delta t {\mathcal H}(t+) \right]$  
  $\textstyle =$ $\displaystyle \tilde{T}\sum_n \frac{(-i)^n}{n!} \left[ \int_{t_0}^{t} {\mathcal H}(\tau ) d \tau
+ \delta t {\mathcal H}(t+) \right]^n$  
  $\textstyle =$ $\displaystyle \tilde{U}(t, t_0) + (-i) \tilde{T}\sum_{n=1}^{\infty} \frac{(-i)^...
...t_{t_0}^{t} {\mathcal H}(\tau ) d \tau \right]^{n-1}
+ {\mathcal O}(\delta t)^2$  
  $\textstyle =$ $\displaystyle \tilde{U}(t, t_0) -i \tilde{U}(t, t_0) \delta t {\mathcal H}(t) + {\mathcal O}(\delta t)^2.$ (1)

Here $t+ = t + \epsilon $, with $\epsilon \rightarrow 0$. Due to anti time ordering, in the last line of the above expression, ${\mathcal H}(t+)$ moves to the right of all other terms. Thus, $\tilde{U}(t, t_0)$ obeys the differential equation
\begin{displaymath}
\frac{d}{dt} \tilde{U}(t, t_0) = \left( -i \right) \tilde{U}(t, t_0) {\mathcal H}(t).
\end{displaymath} (2)