\begin{eqnarray*}
H_0 = \sum_\alpha \epsilon_\alpha a^\dagger_\alpha a_\alpha
\end{eqnarray*}



a. I use $\gamma$ instead of what's on the homework assignment so that I can keep the labels straight. $\beta$ has a negative sign so that the partition function is bounded.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...beta H_0}
a_\gamma^\dagger a_\gamma \right] \vert\{n_i\}\rangle
\end{eqnarray*}



where $\vert\{n_i\}\rangle$ stands for a many particle state with a set, $\{n_i\}$, of occupation numbers. $a^\dagger_\gamma a_\gamma $ acting on $\vert\{n_i\}\rangle$ returns 0 or 1 depending on whether there is a fermion in state $\gamma$ - Alas, the notation is a bit degenerate - We can likewise get the eigenvalues for the operators in the H-potential. I will use $e^{\sum\mbox{stuff}} = \prod e^{\mbox{stuff}}$, and write

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...beta H_0}
a_\gamma^\dagger a_\gamma \right] \vert\{n_i\}\rangle
\end{eqnarray*}



Now, I let the density operators act on the various $\gamma$ states.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...a
\prod_\alpha \left[e^{-\beta \epsilon_\alpha n_\alpha} \right]
\end{eqnarray*}



Take the term which was generated by the state $\gamma$ out of the product.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...a\neq\gamma} \left[e^{-\beta \epsilon_\alpha n_{\alpha}} \right]
\end{eqnarray*}



Do the sum over occupation numbers $\{n_i\}$ with $n_i=1$ or $0$.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...d_{\alpha\neq\gamma} \left[ 1+e^{-\beta \epsilon_\alpha} \right]
\end{eqnarray*}



b. Solve

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma a_\gamma^\dagger \ri...
...gger a_\gamma \right]
+
\mbox{Trace}\left[e^{-\beta H_0} \right]
\end{eqnarray*}



using $\{a_\alpha,a_\alpha^\dagger\}=1$. We know the first term on the left from part a. The second term doesn't take too much effort to get.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} \right] = \sum_{\{n_i\}} \pro...
...\rangle
= \prod_\alpha \left(1+e^{-\beta \epsilon_\alpha}\right)
\end{eqnarray*}



So

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma a_\gamma^\dagger \ri...
...}}\right]
\prod_\alpha \left(1+e^{-\beta \epsilon_\alpha}\right)
\end{eqnarray*}



Which can be rewritten

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma a_\gamma^\dagger \ri...
..._\gamma}} \prod_\alpha \left(1+e^{-\beta \epsilon_\alpha}\right)
\end{eqnarray*}



c. Noting that

\begin{eqnarray*}
e^{-\beta H_0} a^\dagger_\gamma a_\gamma =
-\frac{1}{\beta}\frac{\partial }{\partial \epsilon_\gamma} e^{-\beta H_0}
\end{eqnarray*}



We can find

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...partial \epsilon_\gamma}
\mbox{Trace}\left[e^{-\beta H_0}\right]
\end{eqnarray*}



>From earlier,

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0}\right]
= \prod_\alpha \left[1+e^{-\beta \epsilon_\alpha}\right]
\end{eqnarray*}



whence it follows

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...d_{\alpha\neq\gamma} \left[ 1+e^{-\beta \epsilon_\alpha} \right]
\end{eqnarray*}



which is what I got in part a.

d.

\begin{eqnarray*}
Z =\mbox{Trace}\left[e^{-\beta H_0}\right]
= \prod_\alpha \left[1+e^{-\beta \epsilon_\alpha}\right]
\end{eqnarray*}



and

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...mma} }
\prod_{\alpha} \left[1+e^{-\beta \epsilon_\alpha }\right]
\end{eqnarray*}



so

\begin{eqnarray*}
\langle n_\gamma \rangle =
\mbox{Trace}\left[e^{-\beta H_0} a_...
...e^{-\beta H_0}\right] \\
= \frac{1}{1+e^{\beta\epsilon_\gamma}}
\end{eqnarray*}



e. For bosons,

\begin{eqnarray*}[a,a^\dagger]=1
\end{eqnarray*}



First, we get the partition function. Notice that all for each $n_i$, all positive integer values are allowed. The sum is a geometric series and can be done explicitly.

\begin{eqnarray*}
\mbox{Trace}\left[ e^{-\beta H_0}\right] = Z
= \sum_{\{n_i\}} ...
...ha}}\\
= \prod_{\alpha} \frac{1}{1-e^{-\beta \epsilon_\alpha} }
\end{eqnarray*}



Then, we use a nice little trick.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma^\dagger a_\gamma \ri...
...\alpha} }
\prod_{\alpha} \frac{1}{1-e^{-\beta \epsilon_\alpha} }
\end{eqnarray*}



\begin{eqnarray*}
\langle n_\gamma \rangle = \mbox{Trace}\left[e^{-\beta H_0} a_...
...{-\beta H_0} \right]\\
=
\frac{-1}{1-e^{\beta \epsilon_\gamma}}
\end{eqnarray*}



When one of the energies is zero or $\beta\rightarrow 0$, the bose function diverges, and we get a condensate.

Finally, I need to find $\mbox{Trace}\left[e^{-\beta H_0} a_\gamma a_\gamma^\dagger \right]$. Use the commutator to shuffle terms.

\begin{eqnarray*}
\mbox{Trace}\left[e^{-\beta H_0} a_\gamma a_\gamma^\dagger \ri...
...ce}\left[e^{-\beta H_0} \right] = \langle n_\gamma \rangle Z + Z
\end{eqnarray*}



f. We work with bosons.

\begin{eqnarray*}[a_\gamma, H_0]=
\sum_\alpha \epsilon_\alpha [a_\gamma, a^\dagg...
...\gamma,a_\gamma a^\dagger_\gamma] \\
= \epsilon_\gamma a_\gamma
\end{eqnarray*}



\begin{eqnarray*}[a^\dagger_\gamma, H_0]=
\sum_\alpha \epsilon_\alpha [a^\dagger...
...\dagger_\gamma a_\gamma] \\
= -\epsilon_\gamma a^\dagger_\gamma
\end{eqnarray*}



So $[H_0,a_\gamma]=-\epsilon_\gamma a_\gamma$ and $[H_0,a^\dagger_\gamma]=\epsilon_\gamma a^\dagger_\gamma$.

\begin{eqnarray*}
\left( \begin{array}{c}
a_\gamma^\dagger (\tau) \\
a_\gamma (...
...ilon_\gamma \tau}\\
\end{array} \right)
e^{\tau H_0 -\tau H_0 }
\end{eqnarray*}



So commuting the $a$ and $a^\dagger$s past the $H$, we find

\begin{eqnarray*}
\left( \begin{array}{c}
a_\gamma^\dagger (\tau)\\
a_\gamma (\...
...\\
a_\gamma \; e^{-\epsilon_\gamma \tau}\\
\end{array} \right)
\end{eqnarray*}