In the following problems, a unit system so that $\hbar =1 $ and $e =1$ is used.

a. The equation of motion is

\begin{eqnarray*}
\frac{d a (0)} {dt} =
-i [a, H]
\end{eqnarray*}



Substitute

\begin{eqnarray*}
a = \frac{1}{\sqrt{2}}
\left[\frac{1}{\sqrt{m\omega}} \hat{p}- i \sqrt{m\omega} \hat{x}\right]
\end{eqnarray*}



\begin{eqnarray*}
a^\dagger = \frac{1}{\sqrt{2}}
\left[\frac{1}{\sqrt{m\omega}} \hat{p}+ i \sqrt{m\omega} \hat{x}\right]
\end{eqnarray*}



into

\begin{eqnarray*}
H = \omega ( a^\dagger a +\frac{1}{2})
\end{eqnarray*}



to get

\begin{eqnarray*}
H = \frac{1}{2m}\hat{p}^2 +\frac{1}{2}m \omega^2 \hat{x}^2
\end{eqnarray*}



using $[\hat{x}_j,\hat{p}_k]=i\delta_{jk}$. This shows that that $a$ and $a^\dagger$ can be considered as an operator factorization of H. Note that these so called creation and annihilation operators satisfy the following commutation relationship,

\begin{eqnarray*}[a,a^\dagger]=1
\end{eqnarray*}



Write out the commutator explicitly and commute the $a$ and $a^\dagger$ in the first term.

\begin{eqnarray*}
\frac{d a (0)} {dt} =
-i \omega (a a^\dagger a + \frac{1}{2}a ...
...\\
= -i\omega (a^\dagger a a - a^\dagger a a + a)
= -i \omega a
\end{eqnarray*}



Upon integration

\begin{eqnarray*}
a(t) = a(0) e^{-i \omega t}
\end{eqnarray*}



b. Given

\begin{eqnarray*}
a^\dagger(t) = a^\dagger(0) e^{i\omega t}
\end{eqnarray*}



And from part a

\begin{eqnarray*}
a^\dagger (0) = \frac{1}{\sqrt{2}}
\left[\frac{1}{\sqrt{m\omega}} \hat{p}(0) + i \sqrt{m\omega} \hat{x}(0) \right]
\end{eqnarray*}



so

\begin{eqnarray*}
a(t) = \frac{1}{\sqrt{2}}
\left[\frac{1}{\sqrt{m\omega}} \hat{...
...ga}} \hat{p}(t) - i \sqrt{\frac{1}{2}m\omega} \hat{x}(t) \right]
\end{eqnarray*}



\begin{eqnarray*}
a^\dagger(t) = \frac{1}{\sqrt{2}}
\left[\frac{1}{\sqrt{m\omega...
...ga}} \hat{p}(t) + i \sqrt{\frac{1}{2}m\omega} \hat{x}(t) \right]
\end{eqnarray*}



Add these

\begin{eqnarray*}
a(t)+a^\dagger(t)=
\sqrt{\frac{2}{m\omega}} \hat{p}(t)
=
\frac...
...\omega}{2}} \hat{x}(0) \left[e^{i\omega t}-e^{-i\omega t}\right]
\end{eqnarray*}



Solve for $\hat{p}$

\begin{eqnarray*}
\hat{p}(t) =
\hat{p}(0) \cos \omega t
- m \omega \hat{x}(0) \sin \omega t
\end{eqnarray*}



To get $\hat{x}$, subtract

\begin{eqnarray*}
a^\dagger(t)-a(t)=
\sqrt{2 m\omega} \hat{x}(t)
=
\frac{1}{\sqr...
...\omega}{2}} \hat{x}(0) \left[e^{i\omega t}+e^{-i\omega t}\right]
\end{eqnarray*}



Solve for $\hat{x}$

\begin{eqnarray*}
\hat{x}(t) =
\hat{x}(0) \cos \omega t +
\frac{1}{m \omega} \hat{p}(0) \sin \omega t
\end{eqnarray*}



c. We know that ${\langle }q {\rangle }$ and ${\langle }p {\rangle }$ obey the Erenfest theorem and we can write:

\begin{eqnarray*}
\frac{ {\langle }q {\rangle }}{dt} &=&\frac{{\langle }p {\rang...
...ngle }p {\rangle }}{dt}&=&-{\langle }V' {\rangle }. \\ \nonumber
\end{eqnarray*}



And they are equivalent to classical equations when ${\langle }V' {\rangle }$ = ${\langle }V'_{cl} {\rangle }$. If dispersion $(\Delta q)^2={\langle }q^2 {\rangle }-{\langle }q {\rangle }^2 $ of wave packet is small then we can write:

\begin{displaymath}
V'(q)=V'_{cl}({\langle }q {\rangle })+(q-{\langle }q {\rangle })V''_{cl}+(q-{\langle }q {\rangle })^2
V'''_{cl}+ ...
\end{displaymath}

We see that $V'=V'_{cl}$ if all term higher that $V''$ are equal to zero. Harmonic oscillator potential has quadratic form and hence quantum and classical equation of motion look similar.