Exercise N5

The a.c. conductivity of a system of interacting electron is given by


\begin{displaymath}
\sigma (\omega ) = -{\frac{{1}}{{V}}}{\frac{{1}}{{\omega}} }Im\Pi _{jj}^{R}
(\omega ),
\end{displaymath} (1)

where $\Pi _{jj}^{R} (\omega )$ is the retarded current-current correlation function


\begin{displaymath}
\begin{array}{l}
\Pi _{jj}^{R} (\omega ) = {\left\langle {{...
...limits_{i = 1}^{N} {}} {\frac{{p_{i}}} {{m}}}e \\
\end{array}\end{displaymath}

Prove the $f$-sum rule:

\begin{displaymath}
\int_{- \infty}^{\infty} \frac{d \omega}{\pi} \sigma(\omega) = \frac{n e^2}
{m},
\end{displaymath}

where $n = N/V$.

Hints:

Express (1) in terms of the spectral function of the current $\rho _{jj}^{}
(\omega )$which is odd.

Relate ${\frac{{\rho _{jj}^{} (\omega )}}{{\omega}} }$ to $\rho _{Pj}^{}
(\omega )$, where $P$ is operator such that ${\frac{{\partial P}}{{\partial
t}}} = j$. Apply the sum rule for $\int {d\omega} \rho _{Pj}^{} (\omega )$ that we learned in class.