Exercise N4

SU($N)$ Anderson impurity model in the limit of infinite Coulomb interaction ($ U = \infty$) at the impurity site.

Consider the Hamiltonian:


\begin{displaymath}
\begin{array}{l}
H = H_{b} + H_{f} + H_{I} \\
H_{b} = {\s...
...g } X_{0m} + V_{k}^{\ast}
X_{m0}c_{km}^{} \\
\\
\end{array}\end{displaymath}

Compute the first three moments of $\langle \langle f_{} (\omega )f_{}^{\dag } (\omega )\rangle \rangle $

Namely


\begin{displaymath}
\begin{array}{l}
\langle {\left\{ {X_{n0} X_{0n}} \right\}}...
...ft\{ {[H,X_{n0} ][H,X_{0n} ]} \right\}}\rangle \\
\end{array}\end{displaymath}

What is their physical meaning?