
Intermediate Quantum Mechanics

Lectures 14 & 15 Notes (3/9/15 & 3/23/15)

Transformations and Symmetries I

Overview

• Five closely related concepts that play important roles in quantum mechanics
are:
− transformations
− symmetries
− invariance
− conservation laws
− degeneracy

Transformations

• Transformations, as the name implies, are operations that can be done on a
system to change it. There are two categories of transformations: discrete and
continuous.

• Discrete transformations are ones that you either do or don’t do. Examples are:
− reflection in a mirror
− interchange of two identical particles
− charge conjugation (changing particles to anti-particles and vice-versa)
− time reversal

• Continuous transformations are governed by a parameter that determines (con-
tinuously) the size of the transformation. Examples are:

− translation in time
− translation in space
− rotation about an axis

• A general continuous transformation operator is represented by Û(α) where α
is a parameter that indicates by how much to transform.

• When Û(α) acts on a state it transforms it to another state.

Û(α) |ψ〉 = |ψ′〉
Unitarity

• We require that if we transform a physical state of a system, it remain a physical
state. That means that its norm must remain one.

〈ψ′ |ψ′ 〉 = 〈ψ |ψ 〉 = 1
We then have:

〈ψ′ |ψ′ 〉 = 〈ψ|Û †(α)Û(α) |ψ〉 = 〈ψ |ψ 〉 ⇒ Û †(α)Û(α) = Î

That is, Û(α) must be a unitary operator.

Û †(α) = Û−1(α) = Û(−α)

• We also require that Û(α) be a linear operator.
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Infinitesimal transformations

• A continuous transformation is completely specified in terms of an infinitesi-
mal transformation. A finite transformation then simply involves applying an
infinitesimal transformation an infinite number of times. Let α be the finite
amount to transform, Û(α). This transformation is equivalent to operating with
Û(α/n) n times,

[
Û(α/n)

]n
. Now let α/n = ε and let n → ∞ while nε = α a

constant.

Û(α) = lim
n→∞

[
Û(α/n)

]n
= lim

n→∞

[
Û(ε)

]n
• Since Û(ε) is linear, it must depend linearly upon ε.

Û(ε) = Î − iε

h̄
Ĝ

where the operator Ĝ must be a Hermitian operator if Û(ε) is a unitary operator.

• Ĝ is called the generator of the transformation. Since Ĝ is Hermitian, it must
be associated with some observable.

• An example of a continuous transformation and its generator is the time trans-
lation operator Ût(ε) that we discussed previously.

Ût(ε) = Î − iε

h̄
Ĥ

where we found that the generator Ĥ is the Hamiltonian or energy operator
whose observable is what we identify classically as the energy of the system.

Invariance, Symmetry, Conservation

• The physics is invariant (unchanged) under a transformation if Û commutes
with the time translation operator.

[Û , Ût] = 0

I’m not indicating a parameter for Û here since this rule applies to discrete
transformations as well as continuous ones.

• This means that if we start with the state |ψ〉, the transformed state |ψ′〉 is the
same whether we first wait and then transform or if we first transform and the
wait.

Û Ût(t0) |ψ〉 = Ût(t0)Û |ψ〉

• The Hamiltonian is symmetric with respect to a transformation if Û commutes
with the Hamiltonian operator.

[Û , Ĥ] = 0

This means, for example, if the Hamiltonian doesn’t depend on x, it is symmetric
with respect to translations in x or if it doesn’t depend on angle, then it is
symmetric with respect to rotations.
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• The observable associated with the generator Ĝ is conserved, its expectation
(average) value doesn’t depend on time, if Ĝ commutes with the Hamiltonian.

[Ĝ, Ĥ] = 0

• You can easily show that these three conditions are equivalent.

[Û , Ût] = 0 ⇔ [Û , Ĥ] = 0 ⇔ [Ĝ, Ĥ] = 0

That is, under a transformation:

invariance ⇔ symmetry ⇔ conservation

Examples

• Here are a few examples of symmetry and invariance.

1) A particle in free space: The Hamiltonian Ĥ = p̂2/2m is independent of x,
so it is symmetric with respect to translations in x, [x̂, Ĥ] = 0. Consider
a particle with momentum p. If we wait a while the particle moves from the
black point to the blue point in the figure below. Then we translate it in x a
distance x0 to the red point.

Now reverse the order so that the particle is first translated in x and then we
wait. As shown in the figure the particle is in the same position as when the
operations were reversed.

x0wait

x0 wait

2) A particle with a planet nearby: The Hamiltonian depends on x, since in the
vicinity of the planet there will be a gravitational potential energy while a long
distance way this will be very small. Consider a particle with momentum p.
If we wait a while the particle moves from the black point to the blue point in
the figure below. Then we translate it in x a distance x0 to the red point.

Now reverse the order so that the particle is first translated in x and then we
wait. Since now the particle is in the gravitation potential of the planet it is
deflected downward. The result is not the same as when the operations are
reversed.

x0wait

x0 wait
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3) A particle with spin in free space: The Hamiltonian is spherically symmetric
so it is symmetric with respect to rotations. If we wait a while and then rotate
we get the same result as when we first rotate and then wait.

4) A particle with spin in a region of uniform magnetic field in the z-direction:
The Hamiltonian is not symmetric with respect to rotations about the x or
y axes. If we start with an electron with spin-up in the x-direction and wait
for one quarter of the precession period, then the state will be spin-up in the
y direction. If we then rotate by 90o about y, it will remain spin-up in the
y-direction. If again start with spin-up in the x-direction but first rotate by
900 about y, the state will be spin-up in the z-direction. If we now wait for
one quarter of the precession period, it will remain spin-up in z. So with one
ordering we end up with the state spin-up in y and with the reversed ordering
we end up with the state spin-up in z.

Overall symmetries of the universe

• In a couple of the examples above there was a lack of translational or rotational
symmetry because the Hamiltonian depended upon position or angle, respec-
tively. That’s because we didn’t include the source of the Hamiltonian (the
planet or the electromagnet) as part of the system. If we include these sources
as part of the system, and translate or rotate, then the physics will be invariant.

• It is a basic principle of physics, called the Cosmological Principle, that the uni-
verse as a whole is homogeneous (the same from place to place) and is isotropic
(has no preferred direction). Under this assumption, if the system is the entire
universe, then physics is invariant under translations and rotations. That in
turn means that the each component of the net linear moment and net angular
momentum of the universe is conserved.

Degeneracy

• As we saw previously, if [Ĝ, Ĥ] = 0, then the two Hermitian operators Ĝ and Ĥ
have the same eigenstates. This leads to four possible situations.

1) Each eigenstate has different eigenvalues of both Ĝ and Ĥ.

(G0, E0) (G1, E1) (G2, E2) · · ·

2) Some eigenstates have the same eigenvalue of Ĝ. For example,

(G0, E0) (G0, E1) (G2, E2) · · ·

3) Some eigenstates have the same eigenvalue of Ĥ. For example,

(G0, E0) (G1, E0) (G2, E2) · · ·

4) Some eigenstates have the same eigenvalues of both Ĝ and Ĥ. For example,

(G0, E0) (G0, E0) (G2, E2) · · ·

• In the case of 3) and 4), we say that there is degeneracy. Two or more distinct
eigenstates have the same energy.
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• In the case of 4), we know something else. There is a theorem that is fairly easy
to prove for finite dimensions but is a bit harder for infinite dimensions, that
says that ”If there are two or more states for which two commuting Hermitian
operators both have the same eigenvalues, then there must be a third Hermitian
operator that commutes with the other two and that has different eigenvalues for
these states. This makes sense, since if there are two states there must be some
way, namely by the value of the observable of the third operator, to distinguish
between the two states. For example, if

(G0, E0) (G0, E0) (G2, E2) · · ·

then there must be another operator F̂ such that:

(F0, G0, E0) (F1, G0, E0) (F2, G2, E2) · · ·

• Note that [Ĝ, Ĥ] = 0 doesn’t necessarily imply degeneracy. In cases 1) and
2) above it doesn’t. However degeneracy always implies that there is some
Hermitian operator that commutes with Ĥ. So if you find a degeneracy, there
must be some symmetry, [Û , Ĥ] = 0.

Generator of space translations

• We’ll now find the generator of space translations: Ûx(ε) |ψ〉 = |ψ′〉 .

• Since we know what a space translation does in the position representation, we’ll
work in that representation.

〈x|Ûx(ε) |ψ〉 = 〈x |ψ′ 〉 = ψ′(x) = ψ(x− ε) = ψ(x) − ε
∂

∂x
ψ(x)

⇒ 〈x|Ûx(ε) |ψ〉 =

(
1 − ε

∂

∂x

)
ψ(x) =

[
1 − iε

h̄

(
−ih̄ ∂

∂x

)]
ψ(x)

⇒ Ûx(ε) = Î − iε

h̄
p̂

• The generator of space translations is p̂. If Ĥ is symmetric under space transla-
tions, momentum is conserved.

Generator of momentum translations

• Similarly, we find the generator of momentum translations: Ûp(ε) |ψ〉 = |ψ′〉 .

• Since we know what a momentum translation does in the momentum represen-
tation, we’ll work in that representation.

〈p|Ûp(ε) |ψ〉 = 〈p |ψ′ 〉 = ψ̃′(p) = ψ̃(p− ε) = ψ̃(p) − ε
∂

∂p
ψ̃(p)

⇒ 〈p|Ûp(ε) |ψ〉 =

(
1 − ε

∂

∂p

)
ψ̃(p) =

[
1 − iε

h̄

(
−ih̄ ∂

∂p

)]
ψ̃(p)

⇒ Ûp(ε) = Î − iε

h̄
(−x̂)

• The generator of momentum translations is −x̂.
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Canonical commutation relations

• Up to now we’ve been working in only one physical dimension. Now we want
to consider three physical dimensions. We need to do that in order to discuss
rotations and solve the hydrogen atom.

• In three physics dimensions, the position operator has three components x̂, ŷ
and ẑ and the momentum operator has three components p̂x, p̂y and p̂z.

• There are three independent spatial translations generated by the momentum
operators.

Ûx(ε) = Î − iε

h̄
p̂x Ûy(ε) = Î − iε

h̄
p̂y Ûz(ε) = Î − iε

h̄
p̂z

Similarly, there are three independent momentum translations generated by the
position operators.

Ûpx(ε) = Î +
iε

h̄
x̂ Ûpy(ε) = Î +

iε

h̄
ŷ Ûpz(ε) = Î +

iε

h̄
ẑ

• The properties of the position and momentum operators are completely specified
by their commutation relations.

• Let x1 = x, x2 = y and x3 = z and p1 = px, p2 = py and p3 = pz. The we have:

[xi, xj] = 0 [pi, pj] = 0 [xi, pj] = ih̄δij

These are called the canonical commutation relations. All of the operators
commute with each other except that x doesn’t commute with px, y doesn’t
commute with py and z doesn’t commute with pz. You should memorize these.

• Finite Transformations

• As noted above, a finite continuous transformation can be built up out of
an infinite number of infinitesimal transformations.

Ûx(x0) = lim
n→∞

[
Ûx(x0/n)

]n
= lim

n→∞

[
Î − i(x0/n)

h̄
p̂x

]n
• Using the mathematical identity: lim

n→∞

(
1− a

n

)n
= e−a, we can express this

as:

Ûx(x0) = e−ix0p̂x/h̄

Similarly:
Ûpx(p0) = eix̂px/h̄

• How are we to interpret an operator exponent? It is just an exponential
function of the operator. It means nothing more or less that the power
series expansion of the function with the operator as the argument.

eÂ = 1 + Â +
Â2

2!
+
Â3

3!
+ · · ·
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• Translations of a wave packet

• As an example of finite translations, let’s look at translations of a Gaussian
wave packet. You did this back in Homework Assignment 2 so this should
be a review.

• In HW 2, you found that the Fourier transform of a momentum Gaussian
wave packet ψ̃(p) = e−p

2/4σ2
p is a position Gaussian wave packet.

ψ(x) =
1

2πh̄

∫
eixp

′/h̄ ψ̃(p′) dp′ =
1

2πh̄

∫
eixp

′/h̄ e−p
′2/4σ2

p dp′ = e−x
2/4σ2

x

Note that I’m ignoring the uninteresting normalization factors here.

• Now let’s translate by an amount x0 in x. This is given by the finite transla-
tion operator e−ix0p̂/h̄. In the momentum representation this is just e−ix0p/h̄.
So we can easily do the translation in x by working in the momentum rep-
resentation.

ψ̃′(p) = e−ix0p/h̄ ψ̃(p)

Then, ψ′(x) is given by:

ψ′(x) =
1

2πh̄

∫
eixp

′/h̄ ψ̃′(p′) dp′ =
1

2πh̄

∫
eixp

′/h̄ e−ix0p/h̄ e−p
′2/4σ2

p dp′

=
1

2πh̄

∫
ei(x−x0)p′/h̄ e−p

′2/4σ2
p dp′ = e−(x−x0)2/4σ2

x

• Similarly, we can translate by an amount p0 in p. This is given by the
finite translation operator eix̂p0/h̄. In the position representation this is just
eixp0/h̄. So we can easily do the translation in p by working in the position
representation.

ψ′(x) = eixp0/h̄ ψ(p)

Then, ψ̃′(p) is given by:

ψ̃′(p) =
1

2πh̄

∫
e−ix

′p/h̄ ψ′(x′) dx′ =
1

2πh̄

∫
e−ix

′p/h̄ eix
′p0/h̄ e−x

′2/4σ2
x dp′

=
1

2πh̄

∫
eix

′(p−p0)/h̄ e−x
′2/4σ2

x dp′ = e−(p−p0)2/4σ2
p
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