
Intermediate Quantum Mechanics

Lecture 7 Notes (2/11/15)

Position and Momentum Operators

The position operator, x̂

• The position operator, x̂, in the x-representation, multiplies ψ(x) by x.

|ψ〉 |x〉−−−→ 〈x |ψ 〉 = ψ(x)

x̂ |ψ〉 |x〉−−−→ 〈x|x̂ |ψ〉 = xψ(x)

• Is x̂ Hermitian? 〈φ|x̂ |ψ〉∗ ?
= 〈ψ|x̂ |φ〉

〈φ|x̂ |ψ〉∗ =

[∫
〈φ |x′ 〉〈x′|x̂ |ψ〉 dx′

]∗
=

[∫
φ∗(x′)x′ψ(x′) dx′

]∗
=

∫
φ(x′)x′ψ∗(x′) dx′ =

∫
ψ∗(x′)x′φ(x′) dx′ = 〈ψ|x̂ |φ〉

• The eigenfunctions of x̂ are states of definite position, |x0〉.

〈x |x0 〉 = δ(x− x0) = ψx0(x)

The derivative operator, D̂

• Next consider the derivative operator D̂

D̂ |ψ〉 |x〉−−−→ 〈x|D̂ |ψ〉 =
d

dx
ψ(x)

• Is D̂ Hermitian? 〈φ|D̂ |ψ〉∗ ?
= 〈ψ|D̂ |φ〉

〈φ|D̂ |ψ〉∗ =

[∫
〈φ |x′ 〉〈x′|D̂ |ψ〉 dx′

]∗
=

[∫
φ∗(x′)

d

dx′
ψ(x′) dx′

]∗
Integrate this by parts.[∫

φ∗(x′)
d

dx′
ψ(x′) dx′

]∗
= −

[∫ (
d

dx′
φ∗(x′)

)
ψ(x′) dx′

]∗
+

[
φ∗(x)ψ(x)

∣∣∣L/2

−L/2

]∗

We require that the functions φ(x) and ψ(x) go to zero at the end points. Then

φ∗(x)ψ(x)
∣∣∣L/2

−L/2
= 0 and we then have.

〈φ|D̂ |ψ〉∗ = −
[∫ (

d

dx′
φ∗(x′)

)
ψ(x′) dx′

]∗
= −

∫
ψ∗(x′)

d

dx′
φ(x′) dx′ = −〈ψ|D̂ |φ〉

D̂ is anti-Hermitian, D̂† = −D̂.
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The k operator, k̂

• It’s easy to see how to make the derivative operator Hermitian. Multiply it by
i or −i. k̂ = −iD̂

k̂ |ψ〉 |x〉−−−→ 〈x|k̂ |ψ〉 = −i d
dx

ψ(x)

• Let |k0〉 be an eigenfunction of k̂ with eigenvalue k0.

k̂ |k0〉 = k0 |k0〉 〈x|k̂ |k0〉 = k0 〈x | k0 〉 = k0ψk0(x)

But we also have: 〈x|k̂ |k0〉 = −i d
dx

ψk0(x).

−i d
dx

ψk0(x) = k0ψk0(x) ⇒ ψk0(x) = Aeik0x

• Normalization of |k0〉

〈k | k0 〉 =

∫
〈k |x′ 〉 〈x′ | k0 〉 dx′ = |A|2

∫
e−ikx′

eik0x dx′

= |A|2
∫
ei(k0−k)x′

dx′ = |A|2 δ(k − k0)

We choose A =
1√
2π

so that the eigenstates of k̂ are normalized to the

δ-function.

The k-representation

• Since k̂ is a Hermitian operator, its eigenvectors form a complete basis.

• Just as we can expand |ψ〉 in terms of the x̂ eigenfunctions:

|ψ〉 =

∫
ψ(x′) |x′〉 dx′ where ψ(x) = 〈x |ψ 〉

we can alternatively expand |ψ〉 in terms of the k̂ eigenfunctions:

|ψ〉 =

∫
ψ̃(k′) |k′〉 dk′ where ψ̃(k) = 〈k |ψ 〉

This is just like, for example, the fact that we can expand the spin state of the
electron either in the z-spin or x-spin bases.

|ψ〉 = α | ↑ 〉 + β | ↓ 〉 or |ψ〉 = γ |→〉 + δ |←〉
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Fourier transforms

• ψ(x) and ψ̃(k) are Fourier transforms of one another.

ψ̃(k) = 〈k |ψ 〉 =

∫
〈k |x′ 〉 〈x′ |ψ 〉 dx′ =

1√
2π

∫
e−ikx′

ψ(x′) dx′

Similarly, using
∫
|k′〉〈k′| dk′ = Î we have:

ψ(x) = 〈x |ψ 〉 =

∫
〈x | k′ 〉 〈k′ |ψ 〉 dk′ =

1√
2π

∫
eik′xψ̃(k′) dk′

The momentum operator, p̂

• Since k̂ is a Hermitian operator, it corresponds to an observable. The observable
corresponding to k̂ is p/h̄, the momentum divided by h̄. We can define then the
momentum operator as: p̂ = h̄k̂. You will have to just accept this for now.
We’ll see later that the expectation value of p̂ corresponds to momentum in the
classical limit.

• Substituting h̄p for k, we have:

ψ̃(p) =
1√
2πh̄

∫
e−ipx′/h̄ ψ(x′) dx′ ψ(x) =

1√
2πh̄

∫
eip′x/h̄ ψ̃(p′) dp′

• The state of a particle is given by either specifying ψ(x) or ψ̃(p) but not both.
Specifying one completely determines the other through the Fourier transform.
Note that this is very different from classical physics where the state of a particle
is specified by giving its position, x, and its momentum, p.

Correspondences between the x and k (or p) representations

• There is a symmetry between the x and k representations and a one-to-one cor-
respondence between an expression in the x representation and a corresponding
expression in the k representation. The table on the following page, illustrates
this.
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x-representation k-representation

eigenstates: |x〉 eigenstates: |k〉

〈x |ψ 〉 = ψ(x) 〈k |ψ 〉 = ψ̃(k)

|ψ〉 =
∫
ψ(x′) |x′〉 dx′ |ψ〉 =

∫
ψ̃(k′) |k′〉 dk′

∫
|x′〉〈x′| dx′ = Î

∫
|k′〉〈k′| dk′ = Î

〈ψ |ψ 〉 =
∫
ψ∗(x′)ψ(x′) dx′ 〈ψ |ψ 〉 =

∫
ψ̃∗(k′)ψ̃(k′) dk′

〈x|x̂ |ψ〉 = xψ(x) 〈k|x̂ |ψ〉 = i
d

dk
ψ̃(k)

〈x|k̂ |ψ〉 = −i d
dx

ψ(x) 〈k|k̂ |ψ〉 = k ψ̃(k)

〈x |x0 〉 = δ(x− x0) 〈k |x0 〉 =
1√
2π

e−ikx0

〈x | k0 〉 =
1√
2π

eik0x 〈k | k0 〉 = δ(k − k0)

〈x | p0 〉 =
1√
2πh̄

eik0x/h̄ 〈p |x0 〉 =
1√
2πh̄

e−ipx0/h̄

Are position and momentum really continuous?

• If space is continuous, then states of definite position are represented in the
position basis as δ-functions.

ψx0(x) = 〈x |x0 〉 =

∞∫
−∞

〈x | k′ 〉 〈k′ |x0 〉 dk′

=
1

2π

∞∫
−∞

eik′(x−x0) dk′ = δ(x− x0)

Notice that ψx0(x) is a δ(x− x0) only if the limits of integration are ±∞. If the
limits of integration are ±K, we then have:

1

2π

∫ K

−K

eik′(x−x0) dk′ =
1

π

sinK(x− x0)

x− x0
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This has a width of π/K.

• A continuous spectrum of position states requires that k and therefore the mo-
mentum range from −∞ to +∞. Since there is not an infinite amount of energy
in the universe, the momentum can only range between finite limits±P = ±h̄K.
The position is then quantized in steps of πnh̄/P where n is an integer.

• Similarly, if k is continuous, states of definite k are represented in the k basis as
δ-functions.

ψ̃k0(p) = 〈k | k0 〉 =

∞∫
−∞

〈p |x′ 〉 〈x′ | k0 〉 dx′

=
1

2π

∞∫
−∞

e−i(k−k0)x′
dx′ = δ(k − k0)

• A continuous spectrum of momentum states requires that x range from −∞ to
+∞. Since the universe is not infinitely large, the space can only range between
finite limits ±L. Momentum is then quantized in steps of πnh̄/L where n is an
integer.

• We previously saw that continuous position and continuous momentum distri-
butions lead to the problem of δ-function normalization of the respective eigen-
states. We now see that since the universe has neither an infinite amount of
energy nor an infinite extent, the distributions in position and in momentum
are not really continuous. However, since it’s much easy to do integrate than to
sum over a huge numbers of terms, we pretend that space and momentum are
effectively continuous.
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