
Intermediate Quantum Mechanics

Lecture 5 Notes (2/4/15)

Electron Spin in a General Direction

Spin in three dimensions

• Two parameters are needed, the zenith angle, θ, and the azimuthal angle, φ, in
order to specify the direction of an arrow in 3-dimensional physical space.

• We can specify the spin state of an electron in three physical dimensions by
a 2-dimensional complex vector. A real vector is not sufficient since once the
|α|2 + |β|2 = 1 condition is imposed there is only one degree of freedom left.

• A two dimensional complex vector has four degrees of freedom: the real and
imaginary parts of α and the real and imaginary parts of β. The condition that
|α|2 + |β|2 = 1 removes one of these. Once the magnitude or modulus of α is set,
this fixes the magnitude or modulus of β. That leaves three degrees of freedom,
one too many.

• One of the remaining three degrees of freedom is superfluous. If we multiply |ψ〉
by a complex number of unit modulus, e−iθ, the resulting state |ψ′〉 = eiθ |ψ〉
is indistinguishable from |ψ〉.

• The only physical connection to a state is through determining the probability
of observing the various possible values of the observables. If |a〉 is an eigenstate
of the Hermitian operator corresponding to observable A and if the eigenvalue
associated with |a〉 is λa, then the probability of measuring λa for a system in
the state |ψ〉 is:

Probψ(λa) = 〈ψ | a 〉 〈a |ψ 〉

If the system is in state |ψ′〉 = eiθ |ψ〉, we have:

Probψ′(λa) = 〈ψ′ | a 〉 〈a |ψ′ 〉 = e−iθeiθ 〈ψ | a 〉 〈a |ψ 〉 = 〈ψ | a 〉 〈a |ψ 〉 = Probψ(λa)

We can’t tell the difference between |ψ〉 and |ψ′〉. They, therefore, represent the
same physical state.

• Since we can multiply the state by any complex phase (complex number with
unit norm) without affecting the physics. We can, if we like, choose the phase to
be such that α is real. Then besides the magnitude of α the only other degree
of freedom is the phase of β.

• Two parameters are needed to specify the direction of an arrow in 3-dimensional
physical space and 2-dimensional complex vector states have two degrees of
freedom. It’s a perfect match. There is a one-to-one correspondence between
the direction of the spin arrow in 3-dimensional physical space and a vector of
unit norm in a n-dimensional complex vector space that represents the state of
the spin. I don’t know whether this is profound or not. Decide for yourself.
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Spin in an arbitrary direction

• There is nothing special about the x, y and z directions. We could measure the
spin of the electron in any direction.

• A general direction in 3-dimensional physical space is give by the unit vector n̂
with:

nx = sin θ cosφ ny = sin θ sinφ nz = cos θ

• The operator corresponding to measuring spin in the n̂ direction is given by:

σ̂n = σ̂xnx + σ̂yny + σ̂znz =⇒

(
0 nx

nx 0

)
+

(
0 −iny
iny 0

)
+

(
nz 0

0 −nz

)

=

(
nz nx − iny

nx + iny −nz

)
=

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

• In a homework problem, you showed that the solution to the equation for the
eigenvector of σ̂n with eigenvalue +1, σ̂n |n↑〉 = |n↑〉 is:

|n↑〉 =

(
cos θ

2

eiφ sin θ
2

)

Using the freedom to choose the overall phase, we could also write this as:

|n↑〉 =

(
e−iφ/2 cos θ

2

eiφ/2 sin θ
2

)

Commutation of operators and (in)compatible observables

• Two operators Â and B̂ commute if ÂB̂ = B̂Â. [More correctly, we should say
ÂB̂ |ψ〉 = B̂Â |ψ〉.] We define [Â, B̂] ≡ ÂB̂ − B̂Â. Two operators commute
if [Â, B̂] = 0.

• Theorem: If two Hermitian operators have common eigenvectors, they commute.
[Note that since the eigenvectors of a Hermitian operator are mutually orthog-
onal, if two Hermitian operators share one eigenvector, then they share all of
their eigenvectors.]

Proof: Assume that |ψ〉 is an eigenvector of both Â and B̂.

ÂB̂ |ψ〉 = Âλb |ψ〉 = λbÂ |ψ〉 = λbλa |ψ〉

= λaλb |ψ〉 = λaB̂ |ψ〉 = B̂λa |ψ〉 = B̂Â |ψ〉

• Theorem: If two Hermitian operators commute, they have common eigenvectors.

Proof: Assume that Â and B̂ commute and that |ψ〉 is an eigenvector of Â.
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ÂB̂ |ψ〉 = B̂Â |ψ〉 = B̂λa |ψ〉 = λaB̂ |ψ〉

So, we have:

Â
(
B̂ |ψ〉

)
= λa

(
B̂ |ψ〉

)
⇒ B̂ |ψ〉 is an eigenvector of Â

⇒ B̂ |ψ〉 is a multiple of |ψ〉 ⇒ |ψ〉 is an eigenvector of B̂

.
• It follows from these two theorems that, if two Hermitian operators do not

commute, they do not have any common eigenvectors. This means that there is
no state for which the observables of both operators have definite values. The
observables are said to be incompatible.

• Here is an example involving spin. We can run an electron in the spin state |ψ〉
through a z-oriented Stern-Gerlach device. This will measure the spin in the
z-direction. We will either measure either spin-up or spin-down. Let’s assume
we measure spin-up. Then, the electron is in a state of spin-up along z. Now
run this electron through an x-oriented Stern-Gerlach device to measure its spin
in the x-direction. We will measure either spin-up or spin-down along x. Let’s
assume we measure spin-up. Does that mean that we have now determined that
the spin of the electron is both up along z and up along x. No, because if we now
run the electron through the z-oriented Stern-Gerlach device again to check the
spin in z, we will measure spin-up with a 50% probability and spin-down with a
50% probability. After we measured the spin in x we destroyed the information
that we had about the spin in the z-direction. Spin in the x-direction and spin
in the z-direction are incompatible, σ̂x and σ̂y do not commute.

Properties of the σ operators

• The σ operators have several important properties.

• Because their eigenvalues are ±1, their square must be the identity operator.
This means that λ2

±1 = 1. Alsotheir trace must be zero. This means that
λ++λ− = 0. The trace of an operator is the sum of the diagonal elements of the
corresponding matrix. The trace of a matrix is independent of representation. In
the representation in which the matrix is diagonal (has only diagonal elements),
the trace is the sum of the eigenvalues.

σ̂2
i = Î Tr(σ̂i) = 0

• As you showed in homework, the sigma operators do not commute.

[σ̂i, σ̂j] ≡ σ̂iσ̂j − σ̂jσ̂i = 2iεijkσ̂k

They do anticommute.

σ̂i, σ̂j ≡ σ̂iσ̂j + σ̂jσ̂i = 2δij ⇒ σ̂iσ̂j = −σ̂jσ̂i if i 6= j

Together these give: σ̂iσ̂j = iεijkσ̂k
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• In a few weeks, we will discuss the rotation by an angle θ of a state with spin-
up in a given direction. We’ll find that the σ operators play a fundamental
and unexpected role in rotational transformations related to their commutation
property given above.

Expectation Values

• The quantity 〈ψ|Â |ψ〉 gives the average value of the observable corresponding
to the operator Â that we would get if we made measurements of the observable
corresponding to Â on an ensemble of identical systems all in the same state |ψ〉.

Proof: Let: |ψ〉 = α1 |a1〉 + α2 |a2〉 + · · · + αn |an〉
where the states |ai〉 are the set of eigenvectors of the operator Â. Then:

Â |ψ〉 = λ1α1 |a1〉 + λ2α2 |a2〉 + · · · + λnαn |an〉

where λi is the eigenvalue corresponding to the eigenvector |ai〉. Now take the
inner product of this with 〈a|.

〈ψ|Â |ψ〉 =
(
〈a1|α∗1 + 〈a2|α∗2 + · · ·+ 〈an|α∗n

)(
λ1α1 |a1〉+λ2α2 |a2〉+ · · ·+λnαn |an〉

)
Using the orthonormality of the eigenvectors, 〈ai | aj 〉 = δij, we have

〈ψ|Â |ψ〉 = λ1α
∗
1α1 + λ2α

∗
2α2 + · · · + λnα

∗
nαn =

∑
i

λiProb(λi) = λ

where λ is the average value of the observable.

Summary of spin

• We have now covered essentially everything related to spin of a single electron.
I’ll summarize it here. There is one more thing to discuss about spin that has
to do with the operation that transforms a spin state by rotating it through an
angle. We’ll discuss this a few lectures from now.

• We can observe (measure) the spin of an electron in the x, y or z directions. By
Postulate 2, there must be Hermitian operators associated with each of these
observables. These operators are: σ̂x, σ̂y, and σ̂z.

• When the spin is observed along any direction, only two values are obtained,
either spin-up (+1) or spin-down (-1) along that direction. That means that
σ̂x, σ̂y, and σ̂z have only two eigenvectors and that, therefore the spin of the
electron is specified by a vector in a two-dimensional vector space.

• The eigenvectors of the σ operators are:

σ̂x : |→〉 =
1√
2

( | ↑ 〉 + | ↓ 〉) |←〉 =
1√
2

( | ↑ 〉 − | ↓ 〉)

σ̂y : |⊗〉 =
1√
2

( | ↑ 〉 + i | ↓ 〉) |�〉 =
1√
2

( | ↑ 〉 − i | ↓ 〉)

σ̂z : | ↑ 〉 | ↓ 〉
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σ̂x |→〉 = |→〉 σ̂x |←〉 = − |←〉

σ̂y |⊗〉 = |⊗〉 σ̂y |�〉 = − |�〉

σ̂z | ↑ 〉 = | ↑ 〉 σ̂z | ↓ 〉 = − | ↓ 〉

• By Postulate 1, any vector with unit norm in this space is a possible state of the
spin:

|ψ〉 = α | ↑ 〉 + β | ↓ 〉 with |α|2 + |β|2 = 1

• By Postulate 4, if the electron is in the state |ψ〉 = α | ↑ 〉 + β | ↓ 〉, then a
measurement of the spin in the z direction will yield | ↑ 〉 with a probability of
|α|2 and | ↓ 〉 with a probability of |β|2.

• By Postulate 3, if an electron is in the state | ↑ 〉, an eigenstate of σ̂z, then a
measurement of the spin in the z-direction will yield | ↑ 〉 with probability 1.

• By postulate 5, if the spin in the z-direction is measured to be spin-up, then
after the measurement, the electron is in the | ↑ 〉 state.

• Usually we work in the representation:

| ↑ 〉 =⇒
(

1

0

)
| ↓ 〉 =⇒

(
0

1

)

|→〉 =⇒ 1√
2

(
1

1

)
|←〉 =⇒ 1√

2

(
1

−1

)

|⊗〉 =⇒ 1√
2

(
1

i

)
|�〉 =⇒ 1√

2

(
1

−i

)

σ̂x =⇒

(
0 1

1 0

)
σ̂y =⇒

(
0 −i
i 0

)
σ̂z =⇒

(
1 0

0 −1

)
• For a general direction given by the unit arrow n̂ with nx = sin θ cosφ, ny =

sin θ sinφ, and nz = cos θ, we have:

σ̂n = σ̂xnx + σ̂yny + σ̂znz =

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

|n↑〉 =

(
e−iφ/2 cos θ

2

eiφ/2 sin θ
2

)

〈n↑|σ̂x |n↑〉 = sin θ cosφ 〈n↑|σ̂y |n↑〉 = sin θ sinφ 〈n↑|σ̂z |n↑〉 = cos θ
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