
Intermediate Quantum Mechanics

Lecture 3 Notes (1/28/15)

Linear Operators, Postulates of QM

Completeness Relation

• Any vector can be expressed as a linear superposition of a set of basis vectors.

|a〉 = a1 |1〉 + a2 |2〉 + · · · + an |n〉 =
∑

i

ai |i〉

• Using the fact that the basis vectors are orthonormal:

〈i | j 〉 = δij

we find that the components of |a〉 are given by its projection onto the basis
vectors:

〈j | a 〉 =
∑

i

ai 〈j | i 〉 = aj

• Now substitute into the above equation for |a〉:

|a〉 =
∑

i

ai |i〉 =
∑

i

〈i | a 〉 |i〉 =
∑

i

|i〉 〈i | a 〉 =

(∑
i

|i〉〈i|

)
|a〉

• The expression
∑

i |i〉〈i| doesn’t do anything. It just leaves the vector |a〉 as
it is. It is the identity operator:

∑
i

|i〉〈i| = Î =⇒


1

1
·
·
·

1


• This is called the Completeness Relation. Note that in order for it to be the

identity operator the sum must be over all of the basis vectors. If just over one
basis vector, it will be the projection of |a〉 on that basis vector, 〈i | a 〉 |i〉. If
over two basis vectors, it will be the projection of |a〉 onto the plane spanned
by the two basis vectors, 〈i | a 〉 |i〉 + 〈j | a 〉 |j〉, and so on. Projection operators
are an important tool that we discuss and use later.

• The importance of the completeness relation is that, since it is the identity
operator, we can stick it wherever we like into any vector expression.

Linear Operators

• An operator acts on a vector yielding another (or the same) vector. An operator
M̂ acting on |a〉 is:

M̂ |a〉 = |b〉



• In quantum mechanics, all operators are linear operators. That means:

M̂
(
α |a〉 + β |b〉

)
= αM̂ |a〉 + βM̂ |b〉

Matrix Representation of Operators

• In a given basis, an operator is represented by a square matrix. Here we use the
completeness relation to write:

|b〉 = M̂ |a〉 =
∑

j

M̂ |j〉 〈j | a 〉

〈i | b 〉 = 〈i|M̂ |a〉 =
∑

j

〈i|M̂ |j〉 〈j | a 〉

This is of the form of (a vector component of |b〉) equals (the vector components
of |a〉) multiplied by (a matrix representing the operator M̂).

|b〉 = M̂ |a〉

=⇒



〈1 | b 〉
〈2 | b 〉
·
·
·

〈n | b 〉


=



〈1|M̂ |1〉 〈1|M̂ |2〉 · · · 〈1|M̂ |n〉
〈2|M̂ |1〉 〈2|M̂ |2〉 · · · 〈2|M̂ |n〉
· · · · · ·
· · · · · ·
· · · · · ·

〈n|M̂ |1〉 〈n|M̂ |2〉 · · · 〈n|M̂ |n〉





〈1 | a 〉
〈2 | a 〉
·
·
·

〈n | a 〉



=



b1

b2

·
·
·
bn


=



m11 m12 · · · m1n

m21 m22 · · · m2n

· · · · · ·
· · · · · ·
· · · · · ·

mn1 mn2 · · · mnn





a1

a2

·
·
·
an


〈i|M̂ |j〉 are the matrix elements mij of the matrix representing M̂ in the |i〉,
|j〉 basis.

• A 2-dimensional example:

aj = 〈j | a 〉 bi = 〈i | b 〉 mij = 〈i|M̂ |j〉

(
b1

b2

)
=

(
m11 m12

m21 m22

)(
a1

a2

)

b1 = m11a1 + m12a2 b2 = m21a1 + m22a2



• Physicists don’t always use precise language. The quantity 〈a|M̂ |b〉 is usually
referred to as the matrix element of a with b. Of course, it’s only really a matrix
element in the basis in which |a〉 and |b〉 are basis vectors. For the 2-dimensional
case, the expression for 〈a|M̂ |b〉 is obtained from:

〈a|M̂ |b〉 = (a∗1, a
∗
2)

(
m11 m12

m21 m22

)(
b1

b2

)

I’ll ask you to work that out in a homework problem just to give an exercise in
matrix multiplication.

Eigenvalues and Eigenvectors

• If M̂ operating on a vector gives a number times that vector:

M̂ |a〉 = λa |a〉

we call |a〉 an eigenvector of M̂ and the (complex) number λa the corresponding
eigenvalue.

• The eigenvalues are the diagonal elements of the matrix in the representation in
which the matrix is diagonalized (has only diagonal elements). Not all operators
can be diagonalized and, therefore, not all operators have eigenvectors.

Hermitian Conjugate

• For operators in complex vectors spaces, we need to have the concept of the
conjugation of an operator. The Hermitian conjugate of an operator M̂ is labeled

M̂ † and is defined by:

〈a|M̂ † |b〉 = 〈b|M̂ |a〉∗

• From this we get the relation between the matrix elements of M̂ † and M̂ .

〈b|M̂ |a〉 =
∑

i

〈b|M̂ |i〉 〈i | a 〉 =
∑
i,j

〈b | j 〉〈j|M̂ |i〉 〈i | a 〉 =
∑
i,j

b∗j mji ai

⇒ 〈b|M̂ |a〉∗ =
∑
i,j

bj m
∗
ji a
∗
i =

∑
i,j

a∗i m
∗
ji bj =

∑
i,j

a∗i m
†
ij bj = 〈a|M̂ † |b〉

⇒ m†ij = m∗ji

The matrix elements of the Hermitian conjugate of M̂ are obtained by trans-
posing (interchanging rows and columns) and complex conjugating the matrix
elements of M̂ .

M̂ =⇒

(
m11 m12

m21 m22

)
M̂ † =⇒

(
m∗11 m∗21

m∗12 m∗22

)

• In the case of a real operator, the Hermitian conjugate is just the transpose

operator. M̂ † = M̂T



Hermitian Operator

• Hermitian operators play a central role in quantum mechanics.

• A Hermitian operator, Ĥ, is defined as an operator that is equal to its Hermitian
conjugate.

Ĥ = Ĥ† ⇒ hij = h†ij = h∗ji

• Clearly the diagonal matrix elements of a Hermitian operator are real and in
general:

〈a|Ĥ |b〉∗ = 〈b|Ĥ† |a〉 = 〈b|Ĥ |a〉

• A real Hermitian operator is a symmetric operator: hji = hij.

Theorems of Hermitian Operators

1) The number of eigenvalues and the number of distinct eigenvectors of
a Hermitian operator are equal to the number of dimensions of the
vector space.

This is not too hard to prove but requires using the characteristic equation. I
don’t want to spend tie on that. If you are interested you can prove it for yourself
or you can find it discussed in a textbook such as the Principles of Quantum
Mechanics by R. Shankar pp. 32-37.

2) All eigenvalues of a Hermitian operator are real.

This is easy to prove and is assigned as a homework problem.

3) Eigenvectors of a Hermitian operator that have unequal eigenvalues
are mutually orthogonal. If λa 6= λb then 〈a | b 〉 = 0.

This is easy to prove and is assigned as a homework problem.

3′) Linear combinations of eigenvectors of a Hermitian operator with
equal eigenvalues can be found that are mutually orthogonal.

This can be shown by using the Gram-Schmidt procedure. See the addendum
at the end of these notes.

4) The eigenvectors of a Hermitian operator form a complete set of mu-
tually orthogonal vectors that, when properly normalized, are a set of
basis vectors for the space.

This follows directly from Theorems 1), 3) and 3′) above.

The Postulates of Quantum Mechanics

• We are now ready to give the complete theory of quantum mechanics in the form
of six postulates.

Postulate 1

The possible states of a system are elements of a complex vector space.

Postulate 2

Observables (quantities that can be measured) correspond to Hermitian opera-
tors. There is a one-to-one correspondence between observables and Hermitian
operators, the only exception being the identity operator.



Postulate 3

The only possible values of an observable are the eigenvalues of the corre-
sponding Hermitian operator.

Postulate 4

For a state |ψ〉, the probability of measuring an observable with value λa is:

Prob(λa) = | 〈a |ψ 〉|2 = 〈ψ | a 〉 〈a |ψ 〉

where |a〉 is an eigenvector of the corresponding Hermitian operator with
eigenvalue λa.

Postulate 4′

Eigenvectors are states for which the observable have a definite value with no
uncertainty.

Postulate 5

When an observable is measured, the system is left in the state that is the
eigenvector whose eigenvalue is the value measured.

Postulate 6

The evolution of the state of a system in time is given by:

ih̄
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉

where Ĥ is the Hermitian operator corresponding to the energy observable. It
is called the Hamiltonian.

Addendum on the Gram-Schmidt Procedure

• The Gram-Schmidt procedure is a cookbook method for finding orthonormal
vectors.

• Consider two linear independent vectors |a〉 and |b〉. From these, we will con-
struct two orthonormal vectors |α〉 and |β〉.

|a

|b

Step 1: Arbitrarily choose |a〉 and normalize it to get |α〉.

|α〉 =
|a〉√
〈a | a 〉

Step 2: Subtract from |b〉 the projection of |b〉 onto |α〉.

|b′〉 = |b〉 − 〈α | b 〉 |α〉

Step 3: Normalize |b′〉 to get |β〉.

|β〉 =
|b′〉√
〈b′ | b′ 〉



If we were given there linearly independent vectors |a〉, |b〉 and |c〉 and were
to construct from these three orthonormal vectors |α〉, |β〉 and |γ〉, we would
proceed as above to get |α〉 and |β〉. Then, |c′〉 would be obtained by sub-
tracting from |c〉 the projection of |c〉 onto the plane spanned by |α〉 and
|β〉.

|c′〉 = |c〉 − 〈α | c 〉 |α〉 − 〈β | c 〉 |β〉

Then, normalize |c′〉 to get |γ〉.

|γ〉 =
|c′〉√
〈c′ | c′ 〉


