
Intermediate Quantum Mechanics

Lecture 2 Notes (1/26/15)

Vector Spaces

Vector Spaces

• Mathematicians have developed many mathematical concepts that later have
found use in physics. One of the more important of these is the concept of a
vector space. Describing arrows in physical space (velocity, momentum, force,
etc.) is one use of vector spaces.

• In addition, there are other more abstract uses of vectors in physics. The concept
of complex vector spaces is at the heart of quantum mechanics. You can’t really
know quantum mechanics without a basic understanding of vector spaces.

• We’ll spend two lectures on the linear algebra of vector spaces and their asso-
ciated linear operators. For most of you, this will be a review, but you’ll see
vectors spaces from a physics rather than a mathematics perspective. I’ll present
a brief summary going over only the essential points needed for use in quantum
mechanics without going into the full mathematical details.

Definition of a Vector Space

• A vector space is a collection of elements (vectors).

• We’ll use the notation |a〉 to indicate a vector with label a. This is called a ket.
You’ll see why shortly. This is a notation that was invented by Dirac and has
been used by physicists ever since. It is a very powerful notation (as you’ll see)
for quantum mechanics. Don’t ask a mathematician about it, though. They use
their own notation.

• There are two defined operations under which the vector space is closed.

− Addition of vectors: |a〉+ |b〉
− Multiplication of a vector by a number: α |a〉

• Closed means that the operation yields a vector in the space

|a〉 + |b〉 = |c〉 α |a〉 = |d〉

• This closure under addition of vectors and multiplication of a vector by a number
are the important properties. Mathematicians also worry about:

− commutativity of the addition

− distribution of the addition over the multiplication

− distribution of the multiplication over the addition

− existence of the null vector

− existence of an inverse for every vector



We won’t be concerned with these. Any sensible vector space, including all of
those that we will discuss, satisfies these. If you are interested you can check
these properties for yourself.

Example of arrows in physical space

• You know about vectors (velocity, momentum, acceleration, etc.). These are all
arrows in physical space. They have a length and a direction. Here is an
arrow in the plane of the computer monitor.

• The addition of arrows is defined in the usual manner by the parallelogram rule.

A

B
A + B = C

Note that for arrows I’m using the familiar notation of a vector as a label with
a half arrow on top rather than the more general ket notation.

• Multiplying an arrow by a number α changes the length of the arrow by a factor
of α. If α is negative, the direction of the arrow is reversed.

• Arrows in the plane of the monitor are elements of a 2-dimensional vector space.
That is, any vector in the space can be expressed as the linear sum of two
linearly independent vectors. We say that these vectors span the space.
Three linearly independent vectors would be needed to express arrows in three
dimensional space.

• The minimum number of linearly independent vectors needed to express any
vector in the space is the dimension of the space.

Basis vectors

• It is almost always most useful to choose the linearly independent vectors that
span the space to be perpendicular and of unit length. They are then called
basis vectors.

• For arrows in 2 dimensions, we can choose the basis vectors: î, ĵ

i

j

Then any vector ~A can be expressed as: ~A = Ax î + Ay ĵ

• In this basis, ~A is determined by the two parameters, Ax and Ay. We can write
this as a column matrix. (

Ax

Ay

)



• Ax and Ay are called the components.

• There are an infinite number of possible choices for basis vectors. We could, for
example, choose: î′, ĵ′.

i’
j’

In this basis, the components would be: Ax′ , Ay′ .

Representation of a vector

• The symbol ~A indicates the actual vector independent of what set of basis vectors
are used. If we choose the î, ĵ basis we can represent the vector in this basis as(

Ax

Ay

)

• We indicate this as:

~A =⇒

(
Ax

Ay

)

We should not use an equal sign since

(
Ax

Ay

)
is not the vector. It is just a

representation of the vector. If we choose a different basis, for example, î′ and ĵ′,
the vector ~A would be represented as:

~A =⇒

(
Ax′

Ay′

)

• This might seem rather pedantic but in quantum mechanics realizing that the
same vector (a state of asystem) can be represented in various ways (for example,
the position or the momentum representation) will be important.

Inner Product

• We will be interested only in vector spaces for which an inner product is
defined. This is an operation on two vectors that yields a number.

• In the case of arrows, the inner product is the familiar dot product of two vectors.
For 2-dimensional arrows:

~A · ~B = AxBx + AyBy

item It can easily be shown that:

~A · ~B =
∣∣ ~A∣∣∣∣ ~B∣∣ cos θ



where
∣∣ ~A∣∣ and

∣∣ ~B∣∣ are the lengths of arrows ~A and ~B, respectively, and θ is
the angle between the two arrows. This shows that the dot (inner) product is
independent of the choice of basis vectors. We also have that:

~A · ~B = projection of ~A on ~B = projection of ~B on ~A

• We require that the inner product operation be linear, that is:

~A · (α ~B + β ~C) = α ~A · ~B + β ~A · ~C

• The inner product of basis vectors is:

î · ĵ = δij =

{
1 if i = j

0 if i 6= j

• The inner product of an arrow with itself is the square of the length of the arrow.

~A · ~A = A2
x + A2

y =
∣∣ ~A∣∣2

Other examples of vector spaces

• Besides 2-d and 3-d arrows, lets look at other examples of vector spaces.

• What about 1-d arrows. These are the numbers on the real number line. So,
the real numbers form a 1-dimensional vector space.

• So far, we have only considered physical arrows. Now let’s consider abstract
vectors spaces where the space is not a physical space. An example is the
collection of all 2× 2 real matrices.

|a〉 =⇒
(
a11 a12

a21 a22

)
These form a vector space. You can easily show that they satisfy closure under
matrix addition and multiplication of a matrix by a real number. What is the
dimension of this space?

• Although we can only think about 1, 2 or 3-dimensional physical space, we can
fairly easily abstract the idea of a vector space to higher dimensions. Warning:
don’t try to envision a 4, 5 or 6-dimensional arrow. You can’t do it. Our brains
are “hardwired” to only be able to think in 3 (or fewer dimensions) physical
dimensions. [Most theorist I know have trouble even thinking in 3 dimensions.]
Even though we can’t envision vectors of more than three dimensions, we can
easily abstract the mathematics of vector spaces to higher dimensions.

• A vector space in n dimensions would have n basis vectors and n components.
A vector in this space could be represented by:

|a〉 =⇒



a1

a2

·
·
·
an





Infinite dimensional vector spaces

• As we consider higher and higher dimension spaces, we can go to the limit of an
infinite dimensional space where:

|f〉 =⇒


f1

f2

·
·
·


This space has an infinite number of basis vectors and an infinite number of
components.

• Now let’s go to the next level of abstraction. In the above the basis vectors and
components while infinite in number are discreet. Let’s go to the case where
they are continuous. Then the components rather than being a function of the
discreet index i will be a function of a continuous variable x.

|f〉 =⇒ f(x)

• The set of real analytic function on a given interval form an infinite dimensional
vector space. An infinite number of components, one for each value of the
continuous variable x, are needed to specify a vector (real function). It is easy
to show that the set of all analytic real function on a given interval satisfy the
closure conditions. Analytic means that the function can be written in the form
of a power series. That means that it is infinitely differentiable. A good synonym
for analytic might be “well behaved”.

• In the case of discreet basis vectors, the inner product of two vectors |a〉 and
|b〉 is given by the sum of the product of components:∑

i

aibi = a1b1 + a2b2 · · ·

For the case of the vector space of real functions, the sum over products of
components becomes an integral over x so that the inner product of two functions
|f〉 and |g〉 is: ∫

f(x)g(x) dx

The Complex Number System

• Quantum mechanics is based on complex vector spaces. We’ll discuss those but
first an aside on complex numbers.

• The complex number system is the ultimate (perfect) number sense. If we start
with the whole (counting) numbers, we find that there isn’t always a solution to
the problem of finding the inverse of addition, e.g., a+ 8 = 5. This leads us to
extend the number system to positive and negative integers but then there isn’t



always a solution to the problem of the inverse of multiplication, e.g., a×5 = 3.
We then extend the number system to the rational numbers (ratios of integers)
but then there isn’t always a solution to the problem of the inverse of raising to
a power, e.g., a2 = 2. We’re then led to the real numbers that in addition to
the rational numbers includes such numbers as:

√
2, π, e, etc. But even with

the real numbers, we can’t solve even such a simple equation as: x2 + 1 = 0.
For that, we need the complex numbers.

• We introduce the imaginary number i =
√
−1. A general complex number is

then: z = a + ib where a and b are real numbers. We are now at the end of
the line. There is no need to introduce any additional numbers. Any complex
number raised to any complex power, zz2

1 , is always a complex number. The
Fundamental Theorem of Algebra that states that any equation of the form:

a0 + a1z + a2z
2 + · · · + anz

n = 0

where the a’s are any complex numbers, has all complex number solutions.

History of the The Complex Numbers

• The complex number were discovered in the 16th century primarily by a group
of Italian mathematicians. They like mathematicians for centuries after them
believed that they were a Platonic ideal having nothing to do with reality.

• The complex numbers have many interesting properties and provide a valuable
tools at solving mathematical problems. One of their first uses was in finding the
real roots of general cubic equations (or determining that there weren’t any real
roots). They also have an important use in solving driven, damped oscillatory
systems, for example, AC circuits. Without complex numbers the algebra would
often be horrendous. Of course, in the end, if it is a physical system, only the
real part of the solution has meaning.

• It must have come as a shock to the physicists in the first half of the 20th
century when they discovered that this ultimate number system was essential
to the quantum mechanics, the most basic of all physical theories. It still seems
really remarkable. In quantum mechanics, complex numbers are not just tools,
they are essential. Without complex numbers there is no quantum mechanics.
In a few lectures from now, we’ll see why.

The complex number plane and complex conjugation

• We can represent the complex number, z = a+ ib, in a plane defined by the real
and imaginary axes.



Im

Re

z = a+ib

• Complex conjugation is a very important operation on complex numbers.
The complex conjugate of z = a + ib is z∗ = a − ib. It is a reflection about
the real axis.

Im

Re

z = a+ib

z* = a-ib

• The product of a complex number and its complex conjugate is always positive
and real. It is the square of the magnitude (or modulus) of the complex number.

zz∗ = (a + ib)(a − ib) = a2 + b2 = |z|2

The Euler Relation

• One of the most remarkable and important equations in mathematics is the
Euler relation.

eiθ = cos θ + i sin θ

where e is the base of the natural logarithm with value 2.718. . .



• The complex number eiθ has unit modulus

eiθ(eiθ)∗ = eiθe−iθ = 1

It represents complex numbers on the unit circle in the complex plane

Im

Re

θ
1-1

-i

i

eiθ

Another expression for a complex number is then: z = r cos θ+ ir sin θ = reiθ

Im

Re

z = a+ib

θ
rcosθ

rsinθ
r

Complex vector space

• A complex vector space is the same as a real vector space except that in multi-
plication of a vector by a number we allow the number to be a complex number.

• The complex numbers themselves form a 1-dimensional complex vector space.
From the figures of the complex plane above, you might think that they also
form a 2-dimensional real vector space but, it’s best not to think of them that
way.



• For simplicity and clarity, I’ll discuss a 2-dimensional complex vector space. It’s
easy to extend this discussion to a higher dimension space.

• We choose two basis vectors. I’ll label them |1〉 and |2〉. Then just as for a real
vector space, a general vector, |a〉, can be expressed as a linear combination of
the the basis vectors:

|a〉 = a1 |1〉 + a2 |2〉

where now the a’s are complex numbers.

• Warning: do not try to think of complex arrows. You’ll go crazy. Just think of
complex vectors in terms of the mathematical properties they have, analogous
to those of arrows.

Dual space

• For a complex vector space, we need the concept of the complex conjugate of a
vector. We notate the complex conjugate of |a〉 by 〈a| called a bra.

If |a〉 =⇒
(
a1

a2

)
then 〈a| =⇒ (a∗1, a

∗
2)

• The set of all bra’s form a dual vector space. There is a one-to-one correspon-
dence between ket vectors and the corresponding dual bra vectors.

Inner product

• We now define the inner product for a complex vector space as:

〈a | b 〉 = (a∗1, a
∗
2)

(
b1
b2

)
= a∗1b1 + a∗2b2

• The reason for defining the inner product this way is so that the inner product
of a vector with itself is real and positive:

〈a | a 〉 = (a∗1, a
∗
2)

(
a1

a2

)
= a∗1a1 + a∗2a2 = |a1|2 + |a2|2

• 〈a | a 〉 is the square of the “length” (norm) of |a〉.

• The reason for writing the bra as a row matrix is that the inner product is then
given by the rules of matrix multiplication as above.


