Intermediate Quantum Mechanics Lecture 26 Notes (4/29/15)

Density Matrices II

Density matrix for one particle of a two particle composite system

- Consider a two particle composite system and label the basis states as $|ab\rangle$ where a and b range over the dimension of the individual particles. For example, in the case of spin states of two electrons, the dimension of each particle would be two and a and b would each range over $|\uparrow\rangle$ and $|\downarrow\rangle$.
- The general state of the two particle system can be written as:

$$|\psi\rangle = \sum_{ab} \psi_{ab} |ab\rangle$$

• Now consider an operator \hat{A} that only operates on particle a and therefore doesn't depend on b. The expectation value of the observable corresponding to \hat{A} is given by:

$$\overline{A} = \sum_{aa'} \sum_{bb'} \psi^*_{a'b'} \langle a'b' | \hat{A} | ab \rangle \psi_{ab} = \sum_{aa'} \sum_{b} \psi^*_{a'b} \langle a'b | \hat{A} | ab \rangle \psi_{ab}$$
$$= \sum_{aa'} \sum_{b} \psi^*_{a'b} \langle a' | \hat{A} | a \rangle \psi_{ab} = \sum_{aa'} \sum_{b} A_{a'a} \psi_{ab} \psi^*_{a'b} = \sum_{aa'} A_{a'a} \rho_{aa'}$$

where $\rho_{aa'} = \sum_{b} \psi_{ab} \psi^*_{a'b}$ are the matrix elements of the density matrix of particle *a*.

• We then have: $\overline{A} = \operatorname{Tr}(\hat{A}\hat{\rho})$

Density matrix for one particle of a two particle product state

• If two particle are in a product state then ψ_{ab} factorizes into $\phi_a \chi_b$. The general state of the two particle product system can then be written as:

$$|\psi\rangle = \sum_{ab} \psi_{ab} |ab\rangle = \sum_{ab} \phi_a \chi_b |ab\rangle$$

• The density matrix elements then become:

$$\rho_{aa'} = \sum_{b} \psi_{ab} \psi^*_{a'b} = \sum_{b} \phi_a \phi^*_{a'} \chi_b \chi^*_{b'} = \phi_a \phi^*_{a'}$$
$$\hat{\rho} = |\phi\rangle \langle \phi| \qquad \text{The individual particle is in a pure state.}$$

• The expectation value of \hat{A} is then:

 \Rightarrow

$$\overline{A} = \operatorname{Tr} \left(\hat{A} \hat{\rho} \right) = \sum_{aa'} A_{a'a} \rho_{aa'} = \sum_{aa'} A_{a'a} \phi_a \phi_{a'}^*$$
$$= \sum_{aa'} \langle \phi | a' \rangle \langle a' | \hat{A} | a \rangle \langle a | \phi \rangle = \langle \phi | \hat{A} | \phi \rangle$$

Density matrix elements for one electron in a two electron composite system

• For a two electron composite system, the density matrix elements of electron *a* are given by summing over the spin of electron *b*:

$$\rho_{aa'} = \sum_{b} \psi_{ab} \psi^*_{a'b}$$

• This gives the following useful table:

$$\begin{split} \rho_{\uparrow\uparrow} &= \psi_{\uparrow\uparrow}\psi_{\uparrow\uparrow}^* + \psi_{\uparrow\downarrow}\psi_{\uparrow\downarrow}^* \qquad \rho_{\uparrow\downarrow} &= \psi_{\uparrow\uparrow}\psi_{\downarrow\uparrow}^* + \psi_{\uparrow\downarrow}\psi_{\downarrow\downarrow}^* \\ \rho_{\downarrow\uparrow} &= \psi_{\downarrow\uparrow}\psi_{\uparrow\uparrow}^* + \psi_{\downarrow\downarrow}\psi_{\uparrow\downarrow}^* \qquad \rho_{\downarrow\downarrow} &= \psi_{\downarrow\uparrow}\psi_{\downarrow\uparrow}^* + \psi_{\downarrow\downarrow}\psi_{\downarrow\downarrow}^* \end{split}$$

Example 1: the singlet state

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \\ \psi_{\uparrow\uparrow} &= 0 \qquad \psi_{\uparrow\downarrow} = \frac{1}{\sqrt{2}} \qquad \psi_{\downarrow\uparrow} = -\frac{1}{\sqrt{2}} \qquad \psi_{\downarrow\downarrow} = 0 \\ \rho_{\uparrow\uparrow} &= \frac{1}{2} \qquad \rho_{\uparrow\downarrow} = 0 \qquad \rho_{\downarrow\uparrow} = 0 \qquad \rho_{\downarrow\downarrow} = \frac{1}{2} \\ \hat{\rho} &\longrightarrow \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \end{split}$$

- For each individual electron the entropy is: $S = \log 2$ and the electrons are maximally entangled.
- We can now easily calculate the expectation value of the spin of electron *a* in any direction:

$$\overline{\sigma}_n = \operatorname{Tr}(\hat{\rho}\hat{\sigma}_n) = \frac{1}{2}\operatorname{Tr}(\hat{I}\hat{\sigma}_n) = \frac{1}{2}\operatorname{Tr}(\hat{\sigma}_n) = 0$$

Example 2: the state $|\rightarrow\rightarrow\rangle$

$$\begin{split} |\psi\rangle &= |\rightarrow\rangle \otimes |\rightarrow\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + |\downarrow\rangle\right) \otimes \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + |\downarrow\rangle\right) \\ &= \frac{1}{2} \left(|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\downarrow\downarrow\rangle\right) \\ \psi_{\uparrow\uparrow} &= \frac{1}{2} \qquad \psi_{\uparrow\downarrow} = \frac{1}{2} \qquad \psi_{\downarrow\uparrow} = \frac{1}{2} \qquad \psi_{\downarrow\downarrow} = \frac{1}{2} \\ \rho_{\uparrow\uparrow} &= \frac{1}{2} \qquad \rho_{\uparrow\downarrow} = \frac{1}{2} \qquad \rho_{\downarrow\uparrow} = \frac{1}{2} \qquad \rho_{\downarrow\downarrow} = \frac{1}{2} \\ \hat{\rho} &\longrightarrow \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \end{split}$$

• This is the density matrix of a pure state. We scan check this in the following way using two matrix algebra identities. If we let λ_i be the N eigenvalues of an N-dimensional Hermitian matrix then:

$$\operatorname{Tr} M = \sum_{i} \lambda_{i} \qquad \det M = \prod_{i} \lambda_{i}$$

• In the present case of the two dimensional matrix ρ we have:

 $\operatorname{Tr} \rho = 1 \quad \text{and} \quad \det \rho = 0 \qquad \Rightarrow \qquad \lambda_1 + \lambda_2 = 1 \quad \text{and} \quad \lambda_1 \lambda_2 = 0$

This can only be solved by one of the λ 's equal to one and the other zero. This means that in the basis in which ρ is diagonalized we have:

$$\rho = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

A two-dimensional system, is in a pure state if $\text{Tr } \rho = 0$.

• This only works for a 2-dimensional system. For example, for a 3-dimensional system: det $\rho = 0 \implies \lambda_1 \lambda_2 \lambda_3 = 0$

That means that
$$\rho$$
 is either $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ or $\begin{pmatrix} p_1 & 0 & 0 \\ 0 & p_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

The state might be pure but it might also be partially mixed.

• Using the density matrix that we found above $\rho = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ we can easily calculate the expectation values of $\hat{\sigma}_z$ and $\hat{\sigma}_z$:

$$\overline{\sigma}_z = \operatorname{Tr}(\hat{\rho}\hat{\sigma}_z) = \frac{1}{2}\operatorname{Tr}\left[\begin{pmatrix}1&1\\1&1\end{pmatrix}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\right] = \frac{1}{2}\operatorname{Tr}\begin{pmatrix}1&-1\\1&-1\end{pmatrix} = 0$$
$$\overline{\sigma}_x = \operatorname{Tr}(\hat{\rho}\hat{\sigma}_z) = \frac{1}{2}\operatorname{Tr}\left[\begin{pmatrix}1&1\\1&1\end{pmatrix}\begin{pmatrix}0&1\\1&0\end{pmatrix}\right] = \frac{1}{2}\operatorname{Tr}\begin{pmatrix}1&1\\1&1\end{pmatrix} = 1$$

Summary for a two-dimensional system

Pure State:
$$\rho = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Maximally mixed State: $\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

Partially mixed State: $\rho = \begin{pmatrix} p_1 & 0 \\ 0 & p_2 \end{pmatrix}$ with $p_1 \neq 0$ or 1 and $p_1 \neq 0$ or 1.

Summary of entropy for the singlet state

• The following table summarizer the entropy for the singlet state:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

 $S_{\rm sys}$ is the entropy for the composite system, $S_{\rm A}$ is the entropy for Alice and $S_{\rm B}$ is the entropy for Bob.

	$S_{\rm sys}$	S_{A}	$S_{\rm B}$
Initially:	0	$\log 2$	$\log 2$
After Alice, but not Bob, measures her electron:	0	0	$\log 2$
After Bob, but not Alice, measures his electron:	0	$\log 2$	0
After both Alice and Bob measure their electrons:	0	0	0