Intermediate Quantum Mechanics
 Lecture 26 Notes (4/29/15)

Density Matrices II

Density matrix for one particle of a two particle composite system

- Consider a two particle composite system and label the basis states as $|a b\rangle$ where a and b range over the dimension of the individual particles. For example, in the case of spin states of two electrons, the dimension of each particle would be two and a and b would each range over $|\uparrow\rangle$ and $|\downarrow\rangle$.
- The general state of the two particle system can be written as:

$$
|\psi\rangle=\sum_{a b} \psi_{a b}|a b\rangle
$$

- Now consider an operator \hat{A} that only operates on particle a and therefore doesn't depend on b. The expectation value of the observable corresponding to \hat{A} is given by:

$$
\begin{aligned}
& \bar{A}=\sum_{a a^{\prime}} \sum_{b b^{\prime}} \psi_{a^{\prime} b^{\prime}}^{*}\left\langle a^{\prime} b^{\prime}\right| \hat{A}|a b\rangle \psi_{a b}=\sum_{a a^{\prime}} \sum_{b} \psi_{a^{\prime} b}^{*}\left\langle a^{\prime} b\right| \hat{A}|a b\rangle \psi_{a b} \\
= & \sum_{a a^{\prime}} \sum_{b} \psi_{a^{\prime} b}^{*}\left\langle a^{\prime}\right| \hat{A}|a\rangle \psi_{a b}=\sum_{a a^{\prime}} \sum_{b} A_{a^{\prime} a} \psi_{a b} \psi_{a^{\prime} b}^{*}=\sum_{a a^{\prime}} A_{a^{\prime} a} \rho_{a a^{\prime}}
\end{aligned}
$$

where $\quad \rho_{a a^{\prime}}=\sum_{b} \psi_{a b} \psi_{a^{\prime} b}^{*} \quad$ are the matrix elements of the density matrix of particle a.

- We then have: $\bar{A}=\operatorname{Tr}(\hat{A} \hat{\rho})$

Density matrix for one particle of a two particle product state

- If two particle are in a product state then $\psi_{a b}$ factorizes into $\phi_{a} \chi_{b}$. The general state of the two particle product system can then be written as:

$$
|\psi\rangle=\sum_{a b} \psi_{a b}|a b\rangle=\sum_{a b} \phi_{a} \chi_{b}|a b\rangle
$$

- The density matrix elements then become:

$$
\begin{aligned}
& \rho_{a a^{\prime}}=\sum_{b} \psi_{a b} \psi_{a^{\prime} b}^{*}=\sum_{b} \phi_{a} \phi_{a^{\prime}}^{*} \chi_{b} \chi_{b^{\prime}}^{*}=\phi_{a} \phi_{a^{\prime}}^{*} \\
\Rightarrow \quad & \hat{\rho}=|\phi\rangle\langle\phi| \quad \text { The individual particle is in a pure state. }
\end{aligned}
$$

- The expectation value of \hat{A} is then:

$$
\begin{aligned}
\bar{A} & =\operatorname{Tr}(\hat{A} \hat{\rho})=\sum_{a a^{\prime}} A_{a^{\prime} a} \rho_{a a^{\prime}}=\sum_{a a^{\prime}} A_{a^{\prime} a} \phi_{a} \phi_{a^{\prime}}^{*} \\
& =\sum_{a a^{\prime}}\left\langle\phi \mid a^{\prime}\right\rangle\left\langle a^{\prime}\right| \hat{A}|a\rangle\langle a \mid \phi\rangle=\langle\phi| \hat{A}|\phi\rangle
\end{aligned}
$$

Density matrix elements for one electron in a two electron composite system

- For a two electron composite system, the density matrix elements of electron a are given by summing over the spin of electron b :

$$
\rho_{a a^{\prime}}=\sum_{b} \psi_{a b} \psi_{a^{\prime} b}^{*}
$$

- This gives the following useful table:

$$
\begin{array}{ll}
\rho_{\uparrow \uparrow}=\psi_{\uparrow \uparrow} \psi_{\uparrow \uparrow}^{*}+\psi_{\uparrow \downarrow} \psi_{\uparrow \downarrow}^{*} & \rho_{\uparrow \downarrow}=\psi_{\uparrow \uparrow} \psi_{\downarrow \uparrow}^{*}+\psi_{\uparrow \downarrow} \psi_{\downarrow \downarrow}^{*} \\
\rho_{\downarrow \uparrow}=\psi_{\downarrow \uparrow} \psi_{\uparrow \uparrow}^{*}+\psi_{\downarrow \downarrow} \psi_{\uparrow \downarrow}^{*} & \rho_{\downarrow \downarrow}=\psi_{\downarrow \uparrow} \psi_{\downarrow \uparrow}^{*}+\psi_{\downarrow \downarrow} \psi_{\downarrow \downarrow}^{*}
\end{array}
$$

Example 1: the singlet state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \\
\psi_{\uparrow \uparrow}=0 \quad \psi_{\uparrow \downarrow}=\frac{1}{\sqrt{2}} \quad \psi_{\downarrow \uparrow}=-\frac{1}{\sqrt{2}} \quad \psi_{\downarrow \downarrow}=0 \\
\rho_{\uparrow \uparrow}=\frac{1}{2} \quad \rho_{\uparrow \downarrow}=0 \quad \rho_{\downarrow \uparrow}=0 \quad \rho_{\downarrow \downarrow}=\frac{1}{2} \\
\hat{\rho} \longrightarrow\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
\end{gathered}
$$

- For each individual electron the entropy is: $S=\log 2$ and the electrons are maximally entangled.
- We can now easily calculate the expectation value of the spin of electron a in any direction:

$$
\bar{\sigma}_{n}=\operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{n}\right)=\frac{1}{2} \operatorname{Tr}\left(\hat{I} \hat{\sigma}_{n}\right)=\frac{1}{2} \operatorname{Tr}\left(\hat{\sigma}_{n}\right)=0
$$

Example 2: the state $|\rightarrow \rightarrow\rangle$

$$
\begin{gathered}
|\psi\rangle=|\rightarrow\rangle \otimes|\rightarrow\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \\
=\frac{1}{2}(|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle) \\
\psi_{\uparrow \uparrow}=\frac{1}{2} \quad \psi_{\uparrow \downarrow}=\frac{1}{2} \quad \psi_{\downarrow \uparrow}=\frac{1}{2} \quad \psi_{\downarrow \downarrow}=\frac{1}{2} \\
\rho_{\uparrow \uparrow}=\frac{1}{2} \\
\rho_{\uparrow \downarrow}=\frac{1}{2} \quad \rho_{\downarrow \uparrow}=\frac{1}{2} \quad \rho_{\downarrow \downarrow}=\frac{1}{2} \\
\left.\hat{\rho} \xrightarrow{\longrightarrow} \quad \begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
\end{gathered}
$$

- This is the density matrix of a pure state. We scan check this in the following way using two matrix algebra identities. If we let λ_{i} be the N eigenvalues of an N-dimensional Hermitian matrix then:

$$
\operatorname{Tr} M=\sum_{i} \lambda_{i} \quad \operatorname{det} M=\prod_{i} \lambda_{i}
$$

- In the present case of the two dimensional matrix ρ we have:
$\operatorname{Tr} \rho=1 \quad$ and $\quad \operatorname{det} \rho=0 \quad \Rightarrow \quad \lambda_{1}+\lambda_{2}=1 \quad$ and $\quad \lambda_{1} \lambda_{2}=0$
This can only be solved by one of the λ 's equal to one and the other zero. This means that in the basis in which ρ is diagonalized we have:

$$
\rho=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

A two-dimensional system, is in a pure state if $\operatorname{Tr} \rho=0$.

- This only works for a 2-dimensional system. For example, for a 3-dimensional system: $\quad \operatorname{det} \rho=0 \quad \Rightarrow \quad \lambda_{1} \lambda_{2} \lambda_{3}=0$

That means that ρ is either $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{ccc}p_{1} & 0 & 0 \\ 0 & p_{2} & 0 \\ 0 & 0 & 0\end{array}\right)$
The state might be pure but it might also be partially mixed.

- Using the the density matrix that we found above $\rho=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ we can easily calculate the expectation values of $\hat{\sigma}_{z}$ and $\hat{\sigma}_{z}$:

$$
\begin{gathered}
\bar{\sigma}_{z}=\operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{z}\right)=\frac{1}{2} \operatorname{Tr}\left[\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]=\frac{1}{2} \operatorname{Tr}\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)=0 \\
\bar{\sigma}_{x}=\operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{z}\right)=\frac{1}{2} \operatorname{Tr}\left[\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right]=\frac{1}{2} \operatorname{Tr}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=1
\end{gathered}
$$

Summary for a two-dimensional system

Pure State: $\quad \rho=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
Maximally mixed State: $\quad \rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$

Partially mixed State: $\quad \rho=\left(\begin{array}{cc}p_{1} & 0 \\ 0 & p_{2}\end{array}\right) \quad$ with $p_{1} \neq 0$ or 1 and $p_{1} \neq 0$ or 1.

Summary of entropy for the singlet state

- The following table summarizer the entropy for the singlet state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

$S_{\text {sys }}$ is the entropy for the composite system, S_{A} is the entropy for Alice and S_{B} is the entropy for Bob.

	$\frac{S_{\mathrm{sys}}}{}$	$\underline{S_{\mathrm{A}}}$	$\underline{S_{\mathrm{B}}}$
Initially:	0	$\log 2$	$\log 2$
After Alice, but not Bob, measures her electron:	0	0	$\log 2$
After Bob, but not Alice, measures his electron:	0	$\log 2$	0
After both Alice and Bob measure their electrons:	0	0	0

