
Intermediate Quantum Mechanics

Lecture 25 Notes (4/27/15)

Density Matrices I

Classical probability

• Up to now, we’ve only treated the case in which we definitely know the state of
the system, for example, an electron in the state: |ψ〉 = α | ↑ 〉+β | ↓ 〉. We now
want to treat the rather common situation in which the system is in a definite
state but we don’t know which one. We only know the probabilities that it is in
various states. This type of probability is used in classical physics.

• Imagine a container with ten classical particles in it. In principle, we could know
the states (position and momentum) of all ten of these classical particles. Then
we would have complete knowledge of their states and the state of the system.

• Let’s say though that we are “lazy” and don’t want to try to determine the exact
state. We can then use probability distributions to obtain some knowledge about
the system. For example, if the container is not in a gravitational field (and also
is not accelerating), the probability distribution of the position of each particle
is uniform. Then we know the average position of a particle is the center point of
the container and that, for example, the probability to be in the left half of the
container is 1/2. If we know the temperature, then we know that the average
value of the square of the momentum is p2 = 3k

B
T .

• In the case of the air molecules in a room, it is not just a matter of being lazy.
In a typical room there are about 1027 molecules. It is completely impossible to
know the star of all 1027 molecules, nor would we want to. In this case, we must
resort to using probability to describe the gas.

• If all we know is the probability for a system to be in various states, We estimate
the average value of a kinematical quantity (position, momentum, angular mo-
mentum, energy) by weighting the average value of the quantity for each state
by the probability of the state.

A =
∑

i

AiPi

• If the variable describing the state is continuous this would become an integral:

A =

∫
A(x)ρ(x) dx

where ρ(x) is the probability density.

Mixed states

• Just as for the classical case above, for a quantum system, we might not have
complete knowledge of what state the system is in but only know the probabilities
of it being in various states.
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• An example of this is the polarization of the photons coming from the light
source in your room. Every photon that makes up the light is in one of two
definite polarization states. We can describe the polarization state of the photon
in terms of two mutually perpendicular directions that are each perpendicular
to the momentum of the photon. If the photon is moving in the z-direction,
these could be the x and y polarization states. The light in your room consists
of a huge number of photons (calculate it if you are interested) and you can’t
possibly know the polarization state of each photon. We then say that the light
is unpolarized. That is, there are equal numbers of x and y polarized photons
so that the average polarization is zero.

• Another case, might be where a friend gives us a system in a definite state but
doesn’t tell us which one but just the probabilities fro which states the system
might be in. For example he might tells us there is a 70% probability that the
state he gave us is | ↑ 〉 and a 30% probability that is is | ↓ 〉. Or, maybe he tells
us there is a 50% probability that it is | ↑ 〉 and 50% probability that it is |→〉 .
The state that we have is in a definite state but we don’t know with certainty
which one.

• In that case, we have a mixed state. Since we don’t have complete knowledge
of which state our friend gave us, our description of the state and our predictions
for the results of any measurements on it must include this lack of knowledge.
The way to do this is through the density operator or density matrix.

The density operator

• The density operator is defined by:

ρ̂ ≡
∑

i

Pi |ψi〉〈ψi|

where |ψi〉 are the various states that our friend might have given us and Pi are
the probabilities that our friend told us. Note that the probabilities must sum

to one.
∑

i

Pi = 1

• The |ψi〉 states might not be orthogonal. If we are to represent ρ̂ as a matrix,
we must select an orthonormal basis.

ρ̂ =
∑
mn

ρmn |m〉〈n|

where |m〉 and |n〉 are elements of a set of orthonormal basis vectors.

• We can find the matrix element of ρ̂ in this basis by:

ρmn = 〈m|ρ̂ |n〉 =
∑

i

Pi 〈m |ψi 〉 〈ψi |n 〉

• Since ρ̂ is a Hermitian operator, there is some basis in which its matrix repre-
sentation is diagonal. The diagonal elements are then the probabilities that the
system is in the corresponding basis state. The sum of the diagonal elements
must then be one which means that the trace of the matrix must be one. As you
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showed in a homework problem some time ago, the trace of a Hermitian matrix
is independent of the basis chosen. Therefore, we always have:

Tr (ρ̂) = 1

If the trace of a matrix is not one, then it is not a density matrix.

• If we definitely know what state we have, then we say we have a pure state. That
means the probability of one state is 100% and the probability of all other states
is zero. In that case, in the diagonal representation, only one of the diagonal
elements will be nonzero. For example:

ρ̂ −→


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


• If a system has N dimensions and we only know is that there is equal probability

that is one of the N basis states, then our lack of information about the state
is maximal and we have a maximally mixed state. In that case, in the diagonal
representation, all of the diagonal diagonal elements equal 1/N . For example:

ρ̂ −→


1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4


• We could also have a partially mixed state in which more than one of the diagonal

elements are non zero but are not all equal.

Expectation values for a mixed state

• If we have a mixed state, then the expectation (average) value of an observable
is given by weighing the expectation value for each state by the probability of
that state.

A =
∑

i

Pi 〈ψi|Â |ψi〉

• In terms of the density operator:

A =
∑

i

Pi 〈ψi|Â |ψi〉 =
∑

i

∑
mn

Pi 〈ψi |n 〉〈n|Â |m〉 〈m |ψi 〉

=
∑
mn

ρmnAnm = Tr (ρ̂Â)

• Since ρ̂Â is a Hermitian operator, its trace is independent of basis and we can
calculate it in any orthonormal basis. Also, even if two operators don’t commute,
the trace of their product doesn’t depend on the ordering.

A = Tr (ρ̂Â) = Tr (Âρ̂)
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Thermodynamic Entropy

• In thermodynamics, entropy is a measure of the “disorder” of a system. The
more states available to a system the higher the entropy. In terms of heat
exchange and temperature, the change in entropy is given by:

dS =
dQ

T

• If initially a gas is confined to part of a container and then allowed to expand
adiabatically to fill the entire container, the change in entropy per molecule of
the gas is given by:

∆S = kB ln(Vf/Vi)

If the volume doubles, the change in entropy per molecule increase by ∆S =
kB ln 2 The entropy isproportional to the ln of the number of states available.

• The Second Law of Thermodynamics states that in any process the entropy of
the system increases. This is probably the funniest law in all of physics. All
other laws are absolute. In Newtonian mechanics, F = ma, no exceptions. In
non-relativistic quantum mechanics, the time dependence of a state is given
by the Schrodinger equation, no exceptions. In the case of the Second Law of
Thermodynamics, obedience is optional. The correct statement of the law is
that: In any process the entropy of the system probably increases.

• Consider again a box with ten particles. The probability is 1/2 that any one of
the particles is in the left half of the box. The probability that all ten of the
particles are in the left half of the box is (1/2)10 ≈ 10−3. If I were to take a
photograph every second then in 1000 seconds, ≈ 15 minutes it would be likely
that there would be one photograph will all of the particles in the left half of
the box. That would violate the Second Law of Thermodynamics. If there were
a hundred particles in the box, then the probability that all hundred were in
the left half of the box would be (10−3)

10
= 10−30. Taking one photograph

per second it would take about 1030 seconds to find all hundred particles in the
left half of the box. There are about 107 seconds in a year and the universe has
existed for about 1010 years, 1017 seconds. So we would half to wait for a time 13
orders of magnitude longer than the life of the universe to find all of the particle
in the left half.

Information Entropy

• A related formulation of entropy is as a measure of the lack of information.

• Consider the situation in which there is a barrier such that all of the air is
in one corner of a sealed room. An omniscient being would know the state of
every air molecule and would know the exact state of the system. They would
have complete information. If the gas is allowed to expand, the omniscient
being would lose no information. They would still have complete information
on the sate of every air molecule and therefore of the system. After the gas has
expanded the information that it saws once all up in one corner is still there. If
we were to reverse time and play the “movie” of the expansion backwards, all of
the air would go back to the corner of the room.
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• Since we’re not omniscient, we lose information when the gas expands. When
the gas is in the corner of the room we don’t know where any molecule is in that
corner but we do know that the probability is zero for finding it outside of the
corner of the room. After the gas expands, there is now an equal probability for
an air molecule to be anywhere in the room. Our entropy, lack of information
has increased.

• The information contained in the system has not changed. The entropy of the
system to an omniscient being is the same, S = 0 both before and after the
expansion. The entropy for us depends on our lack of information. If someone
else has more information about the system, then the entropy for them would
be less.

• For a classical system, information entropy is given by:

S = −
∑

i

Pi logPi

• If only one Pi is non-zero, we definitely know the state that the system is in and
the entropy (lack of information) is zero. S = 1 log 1 = 0

• If there is equal probability 1/n for the system to in any of n states and the
probability to be in any state other than these n states is zero, then:

S = −
n∑

i=1

1

n
log(1/n) =

n∑
i=1

1

n
log n = log n

• We may the log to any base, but if we choose base 2, then S = log2 n is the
number of bits of information that we lack.

• For a system with a total of N possible states, the maximum entropy is when
the system has equal probability of being in any of the N states. Smax = logN

Entropy of a quantum system

• For a quantum system, the formula corresponding to S = −
∑
i

Pi logPi is:

S = −Tr (ρ̂ log ρ̂)

• Here log ρ̂ is a function of the operator, ρ̂. It is given by the log power series. In
the basis in which ρ̂ is diagonal,

log ρ̂ −→


log p1 · · ·
· log p2 · · ·
· · · · ·
· · · · ·


• As for the classical case, if the system is definitely in one state, then S =

1 log 1 = 0

• If there is equal probability 1/n for the system to in any of n states and the
probability to be in any state other than these n states is zero, then: S = log n.
As an example, in the two dimensional case of electron spin, the diagonalized
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density matrix for maximal entropy is:

ρ̂ −→

(
1/2 0

0 1/2

)
The entropy is then:

S = −Tr (ρ̂ log ρ̂) −→ −Tr

(
1/2 0

0 1/2

) (
log(1/2) 0

0 log(1/2)

)
= log 2
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