
Intermediate Quantum Mechanics

Lecture 19 Notes (4/6/15)

The Hydrogen Atom II

Eigenstates for l = 0

• The energy eigenstates with l = 0 corresponding to energy eigenvalues En are
given by:

ψn00(r, θ, φ) = Rn0(r)Y
0
0 (θ, φ)

• Since Y 0
0 (θ, φ) = 1/

√
4π is spherically symmetric, these states do not depend

on the angles θ and φ.

• The expressions of the first few radial wave functions are given below where I
have suppressed the uninteresting normalization factors:

R10(r) ∝ e−r/a0

R20(r) ∝
(

1 − r

2a0

)
e−r/2a0

R30(r) ∝

(
1 − 2r

3a0

+
2

27

(
r

a0

)2
)
e−r/3a0

Plots of these are shown below. Notice that the number of nodes (zero cross-
ings) increases with n. This makes senses because the energy and therefore
the momentum increases as n increases. That means the wave function wiggles
more.
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Radial probability density

• Prob = 〈ψnlm |ψnlm 〉 =

∞∫
0

π∫
0

2π∫
0

ψ∗nlm(r, θ, φ)ψnlm(r, θ, φ) r2 dφ d cos θ dr

• The volume probability density is:

dProb

dV
=

dProb

dφ d cos θ r2dr
= ψ∗nlm(r, θ, φ)ψnlm(r, θ, φ)
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• The radial probability density is:

dProb

dr
=

∫
r2ψ∗nlm(r, θ, φ)ψn00(r, θ, φ) dΩ

=

∫
r2R∗nl(r)Rnl(r)Y

∗m
l (θ, φ)Y m

l (θ, φ) dΩ = r2R∗nl(r)Rnl(r)

• For l = 0 we have:
dProb

dr
= r2R∗n0(r)Rn0(r)

The figure below shows plots of the first few of these.
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• For the ground state (n = 1, l = 0) the radial probability density is:

dProb

dr
= r2R∗10(r)R10(r) ∝ r2e−2r/a0
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• We can find the most probable value of the radial position, rmp
10 , by setting the

derivative of r2e−2r/a0 equal to zero.

d

dr

(
r2e−2r/a0

)
= 0 ⇒ rmp

10 = a0
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• The average vale of the radial position, r10, is given by:

r10 =

∫ ∞
0

r
(
r2R∗10(r)R10(r)

)
dr =

∫ ∞
0

r3R∗10(r)R10(r) dr

=

∫ ∞
0

r3e−2r/a0 dr∫ ∞
0

r2e−2r/a0 dr

=
3

2
a0

• The general expression for the average radius is:

rnl =
a0

2

[
3n2 − l(l + 1)

]
Note that for a given n, the average radius is smaller for larger values of l. This
makes sense since the potential energy decreases (become more negative) as the
radius decreases but the angular momentum barrier term, l(l + 1)h̄2/2mr2 ,
increases with decreasing r. These changes in energy can balance so that for
larger l the energy is the same as for smaller l if the average radius is less.

Degeneracy of Energy Levels

• As we have seen, for l = 0 there is an infinite set of energy levels varying as 1/n2

from E1 = −13.6 eV for n = 1 to E → 0 for n → ∞:

En =
E1

n2
= − 13.6 eV

n2

• For higher values of l we expect similar sets of energy levels varying from some
minimum value to zero for each l. What is totally unexpected is that the energy
levels for different l are degenerate as shown here:

1 of 1 4/22/15, 9:06 AM

• For a given n and l, we know that the states with different ml will be degenerate
because, for spherical symmetry, the Hamiltonian commutes with the angular
momentum raising and lower operators: [Ĥ, L̂±] = 0. The fact that the energy
levels for different l are degenerate means that there is another symmetry (an-
other operator that commutes with the Hamiltonian) that we haven’t identified
yet. That operator is the Laplace-Runge-Lenz operator.

The Laplace-Runge-Lenz operator

• A symmetry, as we’ve seen, necessarily results in a conserved quantity. In order
to identify the symmetry causing the degeneracy of the different l states, we
need to identify another conserved quantity.
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• Consider first a classical system of a planet orbiting a star. We know that in
addition to energy the angular momentum vector, ~L = ~r × ~p , is conserved
since the gravitation force is a central force. That means that the orbit of the
planet is contained in a plane.

• In addition to E and ~L, there is another conserved quantity called the Laplace-
Runge-Lenz vector:

~A =
~p× ~L
m

− GmM
~r

r

where m is the mass of the planet and M is the mass of the star.

This vector is indicated in red in the following figure
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• Since the Coulomb potential between the electron and the proton is also a 1/r
potential like the gravitational potential in the planetary system, there is a
Laplace-Runge-Lenz-operator, Â, whose observable is a conserved quantity.

• A general rule in going from classical physics to quantum mechanics is to replace
classical kinematic quantities (momentum, position, angular momentum, etc.)
with operators. We have to be careful, though, about the order of operators since
in general they don’t commute. In that case, you need to split the difference.
In the present case of the Laplace-Runge-Lenz-operator, since momentum and
angular momentum don’t commute, [p̂, L̂] 6= 0, the Â operator must be written
as:

Â =
1

2m

(
~̂p× ~̂L − ~̂L× ~̂p

)
− e2

4πε0

~r

r

• From the Runge-Lenz operator, we can construct raising and lowering operators:

Â+ = Âx + iÂy Â− = Âx − iÂy

The raising operator increase the l and ml quantum numbers of a state by one.

Â+ |n, l, l〉 = c |n, l + 1, l + 1〉

while for a given n, the maximum value of l is n− 1:

Â+ |n, n− 1, n− 1〉 = |0〉
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Â+

Â+

Â+

• Since the Hamiltonian commutes with the Runge-Lenz raising and lowering op-
erators, [Ĥ, Â±]

Hydrogen spectral lines

• As mentioned before, in the early 20th century the hydrogen atom provided
an excellent system for testing the new theory of quantum mechanics. Atomic
spectroscopy, measuring the wavelengths of light emitted by excited hydrogen
atoms determined the values of the hydrogen energy levels that could then be
compared with theoretical calculations.

• In a transition from a higher energy state to a lower one, conservation of energy
gives that the energy of the emitted photon is equal to the difference in the
energies of the initial and final atomic states:

Eγ = Ei−Ef = −E1

(
1

n2
f

− 1

n2
i

)
=

mc2α2

2

(
1

n2
f

− 1

n2
i

)
= 13.6 eV

(
1

n2
f

− 1

n2
i

)

• There are various series of spectral lines, one for each final level, as shown in the
figure below.
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• Since the photon energy is related to its wavelength by: Eγ = pc = hc/λ. We
have:

1

λ
=

mc2α

2h

(
1

n2
f

− 1

n2
i

)
=

mcα2

4πh̄

(
1

n2
f

− 1

n2
i

)
= (1.10×107 m−1)

(
1

n2
f

− 1

n2
i

)

• The Lyman series lines are all in the UV. The first few of the Balmer lines are
in the visible while the higher energy ones are in the UV. The Paschen lines are
all in the IR.
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