
Intermediate Quantum Mechanics

Lecture 18 Notes (4/1/15)

The Hydrogen Atom I
Historical importance of the hydrogen atom

• The hydrogen atom was the principle tool that allowed the physicists developing
quantum mechanics in the 1920’s to test their calculations. They were able
to precisely calculate the discreet energy levels in the hydrogen atom. These
were then compared with the values measured from atomic spectroscopy. The
hydrogen atom provided a perfect test system. If for no other reason, we should
spend time examining the solutions to the hydrogen atom.

The hydrogen atom Hamiltonian

• The hydrogen atom consists of an electron bound by the Coulomb field due of
the nuclear proton.

Ĥ =
p2

2m
+ V (x̂, ŷ, ẑ) =

P̂ 2
x + P̂ 2

y + P̂ 2
z

2m
− e2

4πε0

√
x̂2 + ŷ2 + ẑ2

• In terms of the energy eigenstates and energy eigenvalues:

〈x, y, z |ψE 〉 = ψE(x, y, z)

〈x, y, z|Ĥ |ψE〉 =

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− e2

4πε0
√
x2 + y2 + z2

]
ψE(x, y, z)

The differential equation to be solved is:(
− h̄2

2m
∇2 − e2

4πε0
√
x2 + y2 + z2

)
ψE(x, y, z) = E ψE(x, y, z)

• This equation does not have an analytical solution because the square root de-
pendence makes it a non linear differential equation.

Differential equation in spherical coordinates

• In spherical coordinates, the differential equation becomes:(
− h̄2

2m
∇2 − e2

4πε0r

)
ψE(r, θ, φ) = E ψE(r, θ, φ)

that can now be solved analytically.

• One difficulty is that the expression for the Laplacian, ∇2, in spherical coordi-
nates is somewhat complicated.

∇2 =
1

r2
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r2 ∂

∂r
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∂

∂θ
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∂

∂θ
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1
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∂2

∂φ2

]
(
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2mr2

[
∂

∂r
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∂r
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ
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1
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∂2
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]
− e2

4πε0r

)
ψE(r, θ, φ) = E ψE(r, θ, φ)
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• Since the hydrogen atom has spherical symmetry, the angular dependence of its
wave function is given by the spherical harmonics. Also, because of the spherical
symmetry, the Hamiltonian commutes with the L̂2 and L̂z operators::

[Ĥ, L̂2] = 0 [Ĥ, L̂z] = 0

That means that energy eigenstates are also eigenstates of L̂2 and L̂z. We then
have:

ψElm(r, θ, φ) = R
El

(r)Y m
l (θ, φ)

and we only need to solve for R
EL

(r).

• It can be shown (you can do it yourself if you are so inclined) that in the position

representation with spherical coordinates, the expression for theL̂2 operator is:

〈θ, φ|L̂2 |ψlm〉 = −h̄2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Y m
l (θ, φ) = h̄2l(l+1)Y m

l (θ, φ)

We then have:[
− h̄2

2mr2

(
∂

∂r
r2 ∂

∂r

)
+

L̂2

mr2
− e2

4πε0r

]
R

El
(r)Y m

l (θ, φ) = E R
El

(r)Y m
l (θ, φ)

⇒
[
− h̄2

2mr2

(
∂

∂r
r2 ∂

∂r

)
+
l(l + 1)h̄2

mr2
− e2

4πε0r

]
REl(r) = E R

El
(r)

• This can be simplified by making the substitution χ
El

(r) = rR
El

(r). Then:[
− h̄2

2m

∂2

∂r2
+
l(l + 1)h̄2

mr2
− e2

4πε0r

]
χ

El
(r) = E χ

El
(r)

Correspondence with classical physics

• The above equation for the energy eigenstates has a term involving the square of
the angular momentum that is familiar from the classical physics of an orbiting
planet. The energy of a planet in terms of the radial distance from the star is
given by:

E =
p2
r + p2

θ

2m
− G

mM

r2

where pr and pθ are the components of the momentum parallel and perpendicular
to the radial vector.

• For an orbiting planet in a central force field, the angular momentum, ~L = ~r × ~p
is conserved. The magnitude of the angular momentum L = pθr. Then

E =
p2
r

2m
+

L2

2mr2
− G

mM

r2
=

p2
r

2m
+ Veff(r)

where Veff(r) =
L2

2mr2
− G

mM

r2
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• The differences with the quantum mechanical hydrogen atom are that L2 is
replaced by l(l + 1)h̄2 and the gravitation factor, GmM , is replaced by the
Coulomb factor, e2/4πε0.

The radial solutions

• In order to solve the differential equation for χ
El

(r), try a power series solution
of the form:

χ
El

(r) =
∞∑
i=0

cir
ie−r/a0

In order that the solution correspond to a physically state, we must have:

lim
r→∞

χ
El

(r) = 0

This requires that the power series must terminate at some finite power n. This
leads to a set of eigenstates with discreet eigenvalues En. This is what we expect
because the electron is bound. If the total energy of the electron is positive, then
it is not bound and there is a continuous set of eigenstates.

Fundamental constants

• We’ll now determine the numerical values of the energy eigenvalues and the value
of the characteristic length of the radial wave functions. These can only depend
on the fundamental constants in the problem. There are four of these:

h̄, c, me,
e2

4πε0

where e2/4πε0 is the fundamental strength of electricity.

• There is actually another constant, the mass of the proton, mp. Since this is
about 2000 times larger than the mass of the electron we will ignore it for now
and approximate it to be infinity.
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• As written e2/4πε0 has units of [Joules · meters]. Its numerical value depends
then upon the arbitrary SI system of units. It is useful to express it instead as a
unit-less quantity independent of the system of units chosen. The product of the
two most fundamental constant in physics h̄c also has units of [energy · length].
If we divide by, h̄c, we get a number that reflects the fundamental strength of
electricity.

α =
e2

4πε0h̄c
=

1

137

• The four constants we will use are: h̄, c, me and α

The Bohr radius

• For the ground state l = 0 and there is no angular momentum barrier term. We
then have:

E = T + V =
〈p2〉
2m
− e2

4πε0〈r〉
=
〈p2〉
2m
− αh̄c

〈r〉

• By the Heisenberg Uncertainty Principle: 〈p〉 ≈ h̄/〈r〉. This gives:

E =
h̄2

2m〈r2〉 −
αh̄c

〈r〉

• Note that for a classical planetary system, the ground state must have L > 0
since if L = 0, the planet would fall in to the Sun. The electron even with
l = 0 is kept from collapsing onto the the proton by the Heisenberg uncertainty
relation between momentum and position that introduces a 1/r2 dependence
similar to the angular momentum barrier term.

• We can find an approximate value of 〈r〉 by minimizing the energy:

dE

dr
= − h̄2

mr3
+
αh̄c

r2
= 0 ⇒ r =

h̄

mcα

This is called the Bohr radius and has the value:

a0 =
h̄

mcα
= 0.059 nm = 0.59× 10−10 m

The Virial Theorem

• In classical mechanics, the Virial Theorem relates the average values of the
kinetic and potential energies for a particle in a potential that varies as rn:

T =
n

2
V

This applies in quantum mechanics as well.

• For the Coulomb potential with n = −1, we have:

T = − 1

2
V E = T + V =

1

2
V = −T
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Ground state energy

E1 =
1

2
V = − αh̄c

a0

= − 1

2
m(αc)2 = − 13.6 eV

Non relativistic velocity•
T =

1

2
m〈v2〉 = −E =

1

2
m(αc)2

⇒ 〈v2〉 = (αc)2

• This tells us that the typical velocity of the electron in the hydrogen ground state
is about 0.01c. Since relativistic effects generally depend on (v/c)2, relativistic
corrections to the hydrogen atom are of the order of 10−4.

Higher energy states and dependence on n

• If we were to solve for the energy eigenstates and eigenvalues, we would find that
the energy levels of the hydrogen atom are quantized. The energy eigenvalue are
given by:

En =
E1

n2
= − 13.6 eV

n2

• Since the energy depends on the square of the velocity and inversely with the
typical radial distance, we have:

vn ∝
√
En ∝ n rn ∝

1

En
∝ n2

5


