
Intermediate Quantum Mechanics

Lecture 16 Notes (3/25/15)

Rotations and Angular Momentum

Generator of Rotations

• We can find the generators of rotation transformations similarly to the way we
found the generators of space translations in the last lecture. Here we will work
in spherical rather than Cartesian coordinates and we will focus on rotations
about the z-axis. In terms of spherical coordinates, rotations about the z-axis
correspond to translation in the azimuthal angle φ.

ÛRz(ε) |ψ〉 = |ψ′〉

〈r, θ, φ|ÛRz(ε) |ψ〉 = 〈r, θ, φ |ψ′ 〉 = ψ′(r, θ, φ) = ψ(r, θ, φ− ε)

= ψ(r, θ, φ)− ε ∂
∂φ
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⇒ 〈r, θ, φ|ÛRz(ε) |ψ〉 =
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ψ(r, θ, φ)

⇒ ÛRz(ε) |ψ〉 = Î − iε

h̄
L̂z with 〈r, θ, φ|L̂z |ψ〉 = −ih̄ ∂

∂φ
ψ(r, θ, φ)

• A finite rotation about the z-axis is then given by:

ÛRz(φ0) = eiφ0L̂z/h̄

The Angular Momentum Operator

• We’ll now work out the form of the generator of rotations about the z-axis, in
the position representation using Cartesian coordinates.

• In spherical coordinates:

x = r cosφ sin θ y = r sinφ sin θ z = r cos θ

Let ρ = r sin θ, then:

x = ρ cosφ y = ρ sinφ z = r cos θ

• We then have:
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⇒ 〈x, y, z|L̂z |ψ〉 = (−ih̄)

(
x
∂

∂y
− y

∂

∂x

)
= x

(
−ih̄ ∂

∂y

)
− y

(
−ih̄ ∂

∂x

)

⇒ L̂z = x̂p̂y − ŷp̂x

As can be seen by comparison with the classical dynamic variable, this is the
angular momentum operator corresponding to angular momentum along the z-
axis.

• It’s easy to guess what L̂x and L̂y are:

L̂x = ŷp̂z − ẑp̂y L̂y = ẑp̂x − x̂p̂z L̂z = x̂p̂y − ŷp̂x

• The generators of rotations about the x, y and z axes are, respectively, the x, y
and z angular momentum operators.

Eigenvalues of L̂z

• We will now find the eigenstates and eigenvalues of the L̂z operator. Let |m〉 be
an eigenstate of L̂z with eigenvalue mh̄.

L̂z |m〉 = mh̄ |m〉

• Let’s work in the position representation using spherical coordinates.

〈r, θ, φ|L̂z |m〉 = mh̄ 〈r, θ, φ |m 〉 = mh̄ψm(r, θ, φ)

⇒ −ih̄ ∂

∂φ
ψm(r, θ, φ) = mh̄ψm(r, θ, φ)

• This is a differential equation in φ that is independent of r and θ. That means
that we can write ψm(r, θ, φ) as a product of a function of r and θ and a separate
function of φ.

ψm(r, θ, φ) = F (r, θ)Φm(φ)

• The differential equation above now involves only Φm(φ).

−ih̄ ∂

∂φ
Φm(φ) = mh̄Φm(φ)

This has the solution:
Φm(φ) = Aeimφ

Quantization

• The wavefunction must have a specific value at each point in space. That means
the wavefunction must be a single-valued function of its arguments. Since φ is
a cyclic coordinate, we must have:

Φm(φ+ 2π) = Φm(φ) ⇒ eim(φ+2π) = eimφ ⇒ eim2π = 1

⇒ m2π = n2π where n is an integer

⇒ m is an integer m = · · · ,−2,−1, 0, 1, 2, · · ·
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• The eigenvalues of L̂z are quantized. They can only take on integer values of h̄.

Angular Momentum Commutation Relations

• Using the Cartesian expressions for the L̂ operators:

L̂x = ŷp̂z − ẑp̂y L̂y = ẑp̂x − x̂p̂z L̂z = x̂p̂y − ŷp̂x

and the canonical commutation relations:

[xi, xj] = 0 [pi, pj] = 0 [xi, pj] = ih̄δij

it is straightforward to determine the commutation relations of the L̂’s.

[L̂x, L̂y] = ih̄L̂z [L̂y, L̂z] = ih̄L̂x [L̂z, L̂x] = ih̄L̂y

• We can summarize these as:

[L̂i, L̂j] = ih̄εijkL̂k where εijk is the Levi-Civita symbol

ε123 = ε231 = ε312 = 1 ε321 = ε213 = ε132 = −1 all other εijk = 0

• These commutation relations completely determine the properties of the L̂’s.
They form what is called a Lie algebra. The rotation transformations that they
generate form a Lie group.

Group Theory

• A mathematical group is a collection of elements with a defined operation that
satisfies the following properties.

− The group is closed under the operation. E1 · E2 = E3

− The operation is associative. E1 · (E2 · E3) = (E1 · E2) · E3

− There is an identity element. E · I = E

− Every element has an inverse. E ·E−1 = I with E−1 an element of the group

Note there is not a requirement that the operation be commutative.

• The set of all possible rotations in three dimensional physical space with the
operation defined as the product of rotations forms a group.

− Closure: ÛRα(θα)ÛRβ(θβ) is a rotation

− Associativity: ÛRα(θα)
(
ÛRβ(θβ)ÛRγ (θγ)

)
=

(
ÛRα(θα)ÛRβ(θβ)

)
ÛRγ (θγ)

− Identity element: ÛRi(θi)Î = ÛRi(θi)

− Inverse: ÛRi(θi)ÛRi(−θi) = Î

• A Lie group is a group whose elements are differentiable functions of their
parameter(s). The group of all rotations is a Lie group since ÛRi(θi) = e−iθiL̂i/h̄

is a differentiable function of its parameter θi.
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• The structure of the group of rotations is determined by the commutation rela-
tions of its generators

[L̂i, L̂j] = ih̄εijkL̂k

This is called its Lie algebra.

SU(2)

• The group of all unitary, 2-dimensional operators is called U(2). It is the set
of unitary transformations that are generated by the set of all 2-dimensional
Hermitian operators. Since a two-dimensional Hermitian operator has four in-
dependent parameters, (

a c+ id
c− id b

)
there are four of these. A possible choice is: Î , σ̂x, σ̂y, and σ̂z.

• The operator Î generates the transformations:

ÛI(θ) = eiθÎ = eiθÎ

As we have discussed before we are not interested in these transformations since
they simply multiply a state by an overall complex phase that has no physics
effect.

ÛI(θ) |ψ〉 = e−iθ |ψ〉

• We therefore consider a more restricted group that consists of all transformations
generated by the set of all traceless 2-dimensional Hermitian matrices. This
group is called SU(2).

• The three σ matrices satisfy the following algebra:

[σ̂i, σ̂j] = 2iεijkσ̂k

This is not exactly the Lie algebra of rotations.

• We define Ŝi = h̄/2 σ̂i. These then satisfy the SU(2) Lie algebra:

[Ŝi, Ŝj] = ih̄εijkŜk

• The operators: h̄/2 σ̂x, h̄/2 σ̂y, h̄/2 σ̂z are the generators of the 2-dimensional
manifestation of SU(2). As we will see, there are also higher dimensional (3, 4,
5, · · · ) manifestations of SU(2).
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