Intermediate Quantum Mechanics
 Lecture 13 Notes (3/4/15)
 Simple Harmonic Oscillator II

Matrix elements of \hat{a} and \hat{a}^{\dagger}

- We'll now calculate the constants that result when the raising and lowering operators act on states

$$
\begin{array}{lll}
\hat{a}\left|E_{n}\right\rangle=c_{n}\left|E_{n}\right\rangle & \Rightarrow & \left\langle E_{n}\right| \hat{a}^{\dagger}=c_{n}^{*} \\
\left\langle E_{n}\right| \hat{a}^{\dagger} \hat{a}\left|E_{n}\right\rangle=n & \Rightarrow & \left|c_{n}\right|^{2}=n
\end{array}
$$

We can absorb an overall phase into the eigenstates and make c_{n} real. Then $c_{n}=\sqrt{n}$.

- We have then

$$
\begin{array}{cc}
\hat{a}\left|E_{n}\right\rangle=\sqrt{n}\left|E_{n-1}\right\rangle \quad \hat{a}^{\dagger}\left|E_{n-1}\right\rangle=\sqrt{n}\left|E_{n}\right\rangle & \text { or } \quad \hat{a}^{\dagger}\left|E_{n}\right\rangle=\sqrt{n+1}\left|E_{n+1}\right\rangle \\
\left\langle E_{n-1}\right| \hat{a}\left|E_{n}\right\rangle=\left\langle E_{n}\right| \hat{a}^{\dagger}\left|E_{n-1}\right\rangle=\sqrt{n} & \left\langle E_{n+1}\right| \hat{a}^{\dagger}\left|E_{n}\right\rangle=\sqrt{n+1}
\end{array}
$$

Ground eigenstate wave function

- We will now find the ground state wave function.

$$
\hat{a}\left|E_{0}\right\rangle=|\emptyset\rangle \quad \Rightarrow \quad\left(\hat{x^{\prime}}+i \hat{p^{\prime}}\right)\left|E_{0}\right\rangle=|\emptyset\rangle \quad \Rightarrow \quad\langle x|\left(\hat{x^{\prime}}+i \hat{p^{\prime}}\right)\left|E_{0}\right\rangle=\langle x \mid \emptyset\rangle
$$

This gives a simple first order differential equation:

$$
\left(x^{\prime}+\frac{d}{d x^{\prime}}\right) u_{0}\left(x^{\prime}\right)=0
$$

- It's easy to see that the solution to this equation is:

$$
\begin{gathered}
u_{0}\left(x^{\prime}\right)=A_{0}^{\prime} e^{-x^{\prime^{2}} / 2} \\
\text { Using } \quad x^{\prime}=\sqrt{\frac{m \omega}{\hbar}} x, \quad \text { we have: } \quad u_{0}(x)=A_{0} e^{-m \omega x^{2} / 2 \hbar}
\end{gathered}
$$

First executed state

- We now solve for the first excited state $u_{1}(x)$.

$$
\hat{a}^{\dagger}\left|E_{0}\right\rangle=\left|E_{1}\right\rangle \quad \Rightarrow \quad\left(\hat{x^{\prime}}-i \hat{p}^{\prime}\right)\left|E_{0}\right\rangle=\left|E_{1}\right\rangle \quad \Rightarrow \quad\langle x|\left(\hat{x^{\prime}}-i \hat{p^{\prime}}\right)\left|E_{0}\right\rangle=\left\langle x \mid E_{1}\right\rangle
$$

This gives the first order differential equation:

$$
\left(x^{\prime}-\frac{d}{d x^{\prime}}\right) u_{0}\left(x^{\prime}\right)=u_{1}\left(x^{\prime}\right)
$$

- From the differential equation for $u_{0}\left(x^{\prime}\right)$ above we have that:

$$
\frac{d}{d x^{\prime}} u_{0}\left(x^{\prime}\right)=-x^{\prime} u_{0}\left(x^{\prime}\right)
$$

which gives:

$$
u_{1}\left(x^{\prime}\right)=2 x^{\prime} u_{0}\left(x^{\prime}\right)=A_{1}^{\prime} x^{\prime} e^{-x^{x^{2}} / 2}
$$

Using $\quad x^{\prime}=\sqrt{\frac{m \omega}{\hbar}} x, \quad$ we have: $\quad u_{1}(x)=A_{1} x e^{-m \omega x^{2} / 2 \hbar}$

- We can now get $u_{2}\left(x^{\prime}\right)$ by solving

$$
\left(x^{\prime}-\frac{d}{d x^{\prime}}\right) u_{1}\left(x^{\prime}\right)=u_{2}\left(x^{\prime}\right)
$$

and continue on getting all of the $u_{n}\left(x^{\prime}\right)$'s. We would find:

$$
u_{n}\left(x^{\prime}\right)=H_{n}\left(x^{\prime}\right) e^{-x^{\prime^{2}} / 2}
$$

where $H_{n}\left(x^{\prime}\right)$ is the Hermite polynomial of order n. The even n Hermite polynomials have only even power terms in x^{\prime} and the odd n Hermite polynomials have only odd power terms in x^{\prime}. If you are interested, you can find a listing of the Hermite polynomials on wikipedia or in almost any quantum mechanics text book.

Plots of wave functions and probability distributions

- The plots below show the $n=0, n=1, n=2$ and $n=3$ wave functions.

- The plot below shows the probability distribution $u_{n}^{*}(x) u_{n}(x)$ for $n=50$. The blue curve is the classical expectation. It is the position probability distribution that you would get if you randomly took photographs of a mass on the end of a
spring. For a very high energy states as $n \rightarrow \infty$, the position distribution of the quantum harmonic oscillator approaches the classical case.

Calculating SHO matrix elements

- Using:

$$
\hat{x}^{\prime}=\frac{1}{\sqrt{2}}\left(\hat{a}^{\dagger}+\hat{a}\right) \quad \text { and } \quad \hat{p}^{\prime}=\frac{i}{\sqrt{2}}\left(\hat{a}^{\dagger}-\hat{a}\right)
$$

and the orthonormality of the energy eigenstates, we can evaluate the matrix elements of any powers of $\hat{x^{\prime}}$ or $\hat{p^{\prime}}$ between energy eigenstates.

- For example,

$$
\begin{gathered}
\left\langle E_{m}\right| \hat{x^{\prime}}\left|E_{n}\right\rangle=\frac{1}{\sqrt{2}}\left\langle E_{m}\right|\left(\hat{a}^{\dagger}+\hat{a}\right)\left|E_{n}\right\rangle \\
=\frac{1}{\sqrt{2}}\left(\sqrt{n+1}\left\langle E_{m} \mid E_{n+1}\right\rangle+\sqrt{n}\left\langle E_{m} \mid E_{n-1}\right\rangle\right) \\
=\sqrt{\frac{n+1}{2}} \delta_{m, n+1}+\sqrt{\frac{n}{2}} \delta_{m, n-1}
\end{gathered}
$$

