
Intermediate Quantum Mechanics

Lecture 12 Notes (3/2/15)

Simple Harmonic Oscillator I

The Simple Harmonic Oscillator Potential

• We want to solve for a particle in a simple harmonic oscillator potential:

V (x) =
1

2
mω2x2

• Classically, this describes a mass, m, on the end of spring with spring constant,
k = mω2. The equation of motion is:

mẍ = − kx ẍ = − k

m
x = −ω2x

and has the solution: x = A cos(ωt + φ) where A and φ are just constants
of integration that depend on the initial conditions. The mass oscillates with
angular frequency ω.

Importance of the Simple Harmonic Oscillator potential

• There are two reasons why the simple harmonic oscillator potential is uniquely
important. It gives a very good approximation to a system that is close to
equilibrium and, more importantly, it is the basis of quantum field theory, the
full theory of relativistic quantum mechanics.

• No matter how complicated the potential energy of a system, when the system is
near equilibrium the potential energy can be approximated as a simple harmonic
oscillator potential. The figure below shows the example of the molecular binding
potential of two hydrogen atoms.f-d:04f102e6ba3b559cf127f5be7ea49e6129916e36fb86aa0c1d... https://dr282zn36sxxg.cloudfront.net/datastreams/f-d:04f102e6...
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x0approximately,
simple,harmonic

• If V (x) is analytic, it can be expanded as a power series about the equilibrium
point.

V (x) = a0 + a1(x− x0) + a2(x− x0)2 + . . .

1



A constant term in the energy can always be ignored so the a0 term can be
dropped. Since at equilibrium the force is zero:

F (x0) = − d

dx
V (x0) = 0 ⇒ a1 = 0

The lowest order term is then V (x0) ≈ a2(x−x0)2. For separation distances not
far from the equilibrium separation x0, the potential energy can be approximated
as a quadratic (simple harmonic oscillator) potential.

• In the hydrogen molecule, as long as it is not perturbed too much from its
equilibrium separation, we can treat the two hydrogen atoms as if they were
bound together by a spring. The same is true of the vibrational modes of all
diatomic molecules. It’s also true of polyatomic molecules and for solids.

• The simple harmonic oscillator potential is an essential part of quantum field
theory. In order to formulate the combination of quantum mechanics with the
special theory of relativity, x must be demoted from being as operator to being
just a parameter like time. Then, the quantities that are wave functions in non-
relativistic quantum mechanics become the operators, ψ̂(x, t). They are field
operators, they depend on x and t.

• Consider a standing wave on a string fixed at both ends. For a given normal
mode (harmonic), each point on the string oscillates up and down all with the
frequency of the given harmonic. Each point on the string acts like a simple
harmonic oscillator.

• Electromagnetic waves are analogous to waves on a string. [A difference is that
it is a wave in three dimensions and it is vector wave (the electric field is an
arrow) rather than a scalar wave like the wave on a string.] Just as for a wave
on a string, the normal modes of an electromagnetic field inside a cavity, consist
of a set of simple harmonic oscillators one for each point in space. Each point
in space acts like a simple harmonic oscillator. The quantum field operators
contain creation and annihilation operators that create and annihilate photons,
the quanta of these simple harmonic oscillators.

• We will here solve just a single quantum harmonic oscillator. In quantum field
theory, space consists of a large or infinite number of quantum simple harmonic
oscillators.

Time independent Schrodinger Equation

• The time dependent Shrodinger Equation is: ih̄
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉.

In the x-representation this becomes:

ih̄
d

dt
〈x |ψ(t) 〉 = 〈x|Ĥ |ψ(t)〉

ih̄
∂

∂t
ψ(x, t) =

(
− h̄2

2m

∂2

∂x2
+ V (x)

)
ψ(x, t)
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• The energy eigenstates are given by:

〈x |E 〉 = ψE(x, t) = e−iEt/h̄ u(x)

Plugging this into the time dependent Schrodinger Equation, we get the time
independent Schrodinger equation.

E u(x) =

(
− h̄2

2m

∂2

∂x2
+ V (x)

)
u(x)

For a given V (x), the solution of this differential equation gives the spatial
dependence of the energy eigenstates, while imposing boundary conditions on
u(x), determines the allowed energy eigenvalues.

• Typically, a course in quantum mechanics first solves for an infinite potential
well, a potential energy that is zero inside some region and is infinite outside of
that region and then next solves for the finite potential well, a potential energy
that is zero inside some region and is constant but finite outside of that region.
These are interesting problems that illustrate the idea of quantized energy levels,
but we are going to jump right to the simple harmonic oscillator potential that,
as discussed above, is by far the most important.

• For the simple harmonic oscillator potential, the time independent Schrodinger
Equation is:

E u(x) =

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2

)
u(x)

We could solve this differential equation. Instead we will solve for the energy
eigenvalues and energy eigenstates using just operator algebra.

• For those interested, here are the steps in solving the differential equation.

1) Assume a solution of the form of a power series times a Gaussian:

u(x) =
∑

i

ai(x
′)ie−x′2/2

2) Substitute this into the differential equation and determine a recursion re-
lation for the coefficients of the power series.

ai+2

ai

= f(i)

3) Find that the recursion relation for the power series must terminate for some
term n in order that u(x) satisfy the condition of a physical state:

u(x) → 0 as x → ±∞

4) This gives solutions for u(x) that are finite polynomials times a Gaussian
and that have discreet (quantized) eigenvalues.

3



Operator Solution

• In operator form, the Hamiltonian is:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2

• When solving this equation, the physical constants: h̄, m, ω are a nuisance. We
can get rid of them by writing the Hamiltonian in a unit less form.

Ĥ

h̄ω
=

1

2mh̄ω
p̂2 +

mω

2h̄
x̂2

• Now define: p̂′ ≡ 1√
mh̄ω

p̂ and x̂′ ≡
√
mω

h̄
x̂

The Hamiltonian is then: Ĥ =
h̄ω

2

(
p̂′2 + x̂′2

)

• The commutator of x̂′ with p̂′ is: [x̂′, p̂′] =
[x̂, p̂]

h̄
= i

• Define two new operators:

â ≡ 1√
2

(
x̂′ + ip̂′

)
and â† ≡ 1√

2

(
x̂′ − ip̂′

)
• The product of â† and â is:

â†â =
1

2

(
x̂′ − ip̂′

)(
x̂′ + ip̂′

)
=

1

2

(
x̂′2 + p̂′2

)
+

i

2
[x̂′, p̂′]

=
1

2

(
x̂′2 + p̂′2

)
− 1

2
=

Ĥ

h̄ω
− 1

2

• The Hamiltonian is then: Ĥ = h̄ω

(
â†â +

1

2

)

• If |En〉 is an eigenstate of Ĥ with eigenvalue En then, from the above equation,
it is also a eigenstate of â†â:

Ĥ |En〉 = En |En〉 â†â |En〉 = n |En〉 with En = nh̄ω +
h̄ω

2

n will turn out to be an integer but we haven’t shown that yet.

Raising and Lowering Operators

• The commutation of â and â† is:

[â, â†] =
1

2

[(
x̂′ + ip̂′

)
,
(
x̂′ − ip̂′

)]
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= − i

2
[x̂′, p̂′] +

i

2
[p̂′, x̂′] = − i[x̂′, p̂′] = 1

• We now use this commutator to find â† |En〉:

â† |En〉 = â†[â, â†] |En〉 = â†(ââ† − â†â) |En〉 = â†ââ† |En〉 − nâ† |En〉

⇒ â†â
(
â† |En〉

)
= (n+ 1)â† |En〉

⇒ â† |En〉 is an eigenstate of â†â with eigenvalue n+ 1.

⇒ â† |En〉 is an eigenstate of Ĥ with eigenvalue: (n+1)h̄ω+
h̄ω

2
= En + h̄ω

⇒ â† |En〉 = α |En+1〉 with Ĥ |En+1〉 = En+1 |En+1〉

• In a similar manner, we find:

â |En〉 is an eigenstate of â†â with eigenvalue n− 1.

⇒ â |En〉 is an eigenstate of Ĥ with eigenvalue: (n−1)h̄ω+
h̄ω

2
= En− h̄ω

⇒ â |En〉 = β |En−1〉 with Ĥ |En−1〉 = En−1 |En−1〉

Energy eigenstates

• Starting with an energy eigenstate |En〉 with energy eigenvalue En and operating
successively with â†, creates other eigenstates each with an energy eigenvalue of
one additional unit of h̄ω. Similarly, starting with an energy eigenstate |En〉 with
energy eigenvalue En and operating successively with â, creates other eigenstates
each with an energy eigenvalue of one less unit of h̄ω. We then have a ladder of
energy eigenvalues separated from each other by an integral number units of h̄ω
of energy.
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|Eni

|En+1i

|En+2i

|En�2i

|En�1i

E = En

E = En + ~!

E = En � ~!

E = En � 2~!

E = En + 2~!

• In the direction of increasing energy this raising can continue to infinity. In the
direction of decreasing energy the lowering must terminate at a lowest energy
state since the energy eigenvalues of the harmonic oscillator potential must be
positive definite.

The ground state

• It is easy to show that the eigenvalues of the harmonic oscillator Hamiltonian
must be greater than or equal to zero.

Ĥ =
h̄ω

2

(
p̂′2 + x̂′2

)
Let |E〉 be an eigenstate of Ĥ and define |A〉 ≡ p̂′ |E〉 and |B〉 ≡ x̂′ |E〉

E = 〈E|Ĥ |E〉 =
h̄ω

2

(
〈E|p̂′p̂′ |E〉 + 〈E|x̂′x̂′ |E〉

)
=

h̄ω

2

(
〈A |A 〉+ 〈B |B 〉

)
Since the inner product of a vector with itself is positive definite, we have:

〈A |A 〉 ≥ 0 and 〈B |B 〉 ≥ 0 ⇒ E ≥ 0

• This means that we can’t jest keep lowering. There must be a lowest energy
state with positive definite energy. This is the ground state |E0〉. The lowering
operator â acting on this state gives the null vector: â |E0〉 = |∅〉.
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• The ground state |E0〉 has energy E = h̄ω/2. The other eigenstates |En〉 then
have energies:

En = nh̄ω +
h̄ω

2

where we now have that n is a positive integer or zero: n = 0, 1, 2, . . .
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