
Intermediate Quantum Mechanics

Lecture 11 Notes (2/25/15)

Particle on a Line

Hamiltonian for a particle on a line

• Making the assumption that Ĥ is the energy operator and that p̂ = h̄k̂ is the
momentum operator, the Hamiltonian for a particle on a line is given by:

Ĥ =
p̂2

2m
+ V (x̂)

We will see shortly the reason for the Ĥ and p̂ operator assumptions.

• The kinetic energy term in the Hamiltonian is based on the non-relativistic
energy-momentum relation: E = p2/2m. We would, of course, prefer to base it
on the relativistically correct energy-momentum relation: E2 = p2c2 + m2c4

but, because this has two solutions: E = ±
√
p2c2 + m2c4, it leads to issues

involving negative energies and negative probabilities that have to be dealt with.
For now, we will do as Schrodinger did and develop non-relativistic quantum
mechanics.

• The second term is in the expression for the Hamiltonian is the potential energy.
It is a function of the x-operator, x̂. We will take V (x̂) to be an analytic function.

That is, it can be expressed as a power series: V (x̂) = v0Î + v1x̂ + v2x̂2 + · · · .

Rate of change of the average position

• In order to find the rate of change of the average position, we use the Ehrenfest
Theorem.

d

dt
〈ψ(t)|x̂ |ψ(t)〉 = − i

h̄
〈ψ(t)|[x̂, Ĥ] |ψ(t)〉

• Since [x̂, x̂n] = 0, we have [x̂, V (x̂)] = 0. Then only the p̂2/2m term in
the Hamiltonian contributes to the commutation of x̂ with Ĥ.

• Now we calculate [x̂, p̂2]:

Use [x̂, p̂] = ih̄ ⇒ x̂p̂ = [x̂, p̂] + p̂x̂ = ih̄ + p̂x̂

[x̂, p̂2] = x̂p̂p̂ − p̂p̂x̂ = (ih̄ + p̂x̂)p̂ − p̂p̂x̂

= ih̄p̂ + p̂(ih̄ + p̂x̂) − p̂p̂x̂ = 2ih̄p̂ + p̂p̂x̂ − p̂p̂x̂ = 2ih̄p̂

• We then have:

d

dt
〈ψ(t)|x̂ |ψ(t)〉 = − i

h̄
〈ψ(t)|[x̂, Ĥ] |ψ(t)〉 = − i

h̄
〈ψ(t)|[x̂,

(
p̂2

2m
+ V (x̂)

)
] |ψ(t)〉

= − i

2mh̄
〈ψ(t)|[x̂, p̂2] |ψ(t)〉 =

1

m
〈ψ(t)|p̂ |ψ(t)〉
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Rate of change of the average momentum

• We’ll now use the Ehrenfest Theorem to find the rate of change of the average
momentum.

d

dt
〈ψ(t)|p̂ |ψ(t)〉 = − i

h̄
〈ψ(t)|[p̂, Ĥ] |ψ(t)〉

• Since [p̂, p̂2] = 0, only the V (x̂) term in the Hamiltonian contributes to the
commutation of p̂ with Ĥ.

• We need to evaluate [p̂, x̂n]. We’ll do this in the x-representation. Note that the
commuter of two operators is independent of representation.

〈x|[p̂, x̂n] |ψ〉 = 〈x|
(
p̂x̂n − x̂np̂

)
|ψ〉 = −ih̄ d

dx
[xnψ(x)] + ih̄xn d

dx
ψ(x)

= −ih̄
[
d

dx
xn

]
ψ(x) − ih̄xn d

dx
ψ(x) + ih̄xn d

dx
ψ(x) = −ih̄

[
d

dx
xn

]
ψ(x)

⇒ [p̂, x̂n] = −ih̄ d

dx̂
x̂n

Since: V (x̂) = v0Î + v1x̂+ v2x̂2 + · · · we have [p̂, V (x̂)] = −ih̄ d

dx̂
V (x̂)

• We then have:

d

dt
〈ψ(t)|p̂ |ψ(t)〉 = − i

h̄
〈ψ(t)|[p̂, Ĥ] |ψ(t)〉 − i

h̄
〈ψ(t)|[p̂,

(
p̂2

2m
+ V (x̂)

)
] |ψ(t)〉

= − i
h̄
〈ψ(t)|[p̂, V (x̂)] |ψ(t)〉 = −〈ψ(t)|

(
d

dx̂
V (x̂)

)
|ψ(t)〉 = 〈ψ(t)|F (x̂) |ψ(t)〉

where F (x̂) = − d

dx
V (x̂)

Connection with classical physics

• We’ve now made the connection with classical physics. We’ve found that:

d

dt
〈ψ(t)|x̂ |ψ(t)〉 =

1

m
〈ψ(t)|p̂ |ψ(t)〉 and

d

dt
〈ψ(t)|p̂ |ψ(t)〉 = 〈ψ(t)|F (x̂) |ψ(t)〉

or ẋ =
p

m
and ṗ = F (x)

These parallel the relations that we know from classical physics:

ẋ =
p

m
and ṗ = F (x)

• The association of Ĥ as the energy operator and p̂ = h̄k̂ as the momentum
operator leads to a description at the macroscopic scale that is consistent with
classical physics.
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• In a sense, position, momentum and energy are emergent properties. At the
microscopic scale, momentum specifies how rapidly the particle’s wavefunction
changes with position and energy specifies how rapidly the state of the particle
changes with time. It is only when we average over many identical particles that
position, energy and momentum take on their classical meanings.

• Another connection with classical physics is through the conservation laws. In
classical physics, we have that the energy of a closed system is conserved. In
quantum mechanics we have from the Ehrenfest Theorem:

d

dt
〈ψ(t)|Ĥ |ψ(t)〉 = − i

h̄
〈ψ(t)|[Ĥ, Ĥ] |ψ(t)〉 = 0

Also, in classical physics, we have that the momentum of a free particle, V (x) =
0, is conserved. In quantum mechanics we have from the Ehrenfest Theorem:

d

dt
〈ψ(t)|p̂ |ψ(t)〉 = − i

h̄
〈ψ(t)|[p̂, Ĥ] |ψ(t)〉 = − i

2mh̄
〈ψ(t)|[p̂, p̂2] |ψ(t)〉 = 0

Classical potential

• From the above, we have ṗ = F (x). However, correspondence with a classical
situation requires the stronger condition that ṗ = F (x). Classically, the
particle is located at x and the rate of change of momentum is given by the force
at that point.

• In general, it is not the case that F (x) = F (x). This is shown by the following
simple example. Take the case in which the position probability distribution is
a double Gaussian peaked at x = ±1 while F (x) = x2. Here, x = 0 and
F (x) = F (0) = 0 with F (x) = x2 6= 0.

x

 ⇤(x) (x)

• In order for the particle to behave classically, the feature size of the potential
energy must be large compared to the feature size of the particle’s wave packet.
As shown in the left figure below. Then the particle nature of the wave packet
dominates and it scatters off of the potential like a classical particle. If the
feature size of the potential energy is small compared to the feature size of the
wave packet, the wave nature of the packet dominates and and it scatters off
of the potential like a classical wave as shown in the figure to the right. In the
intermediate case, the wave packet scattering exhibits both particle and wave-
like features.
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Cauchy-Schwarz Inequality

• We now need to take a brief mathematical interlude to prove the Cauchy-Schwarz
Inequality, a useful inequality of linear algebra. The Cauchy-Schwarz Inequality
is based on the Triangle Inequality. We’ll first derive these for the case of ar-
rows (real vectors in physical space) and then extend this to the general case of
abstract complex vectors.

• We start with the case of arrows. The Triangle Inequality just says that the
length of the sum of two sides of a triangle is greater than or equal to the length
of the third side. I don’t think that I need to prove this to you.

| ~X| + |~Y | ≥ | ~X + ~Y |

• If we square both sides of the Triangle Inequality we get:

| ~X|2 + |~Y |2 + 2| ~X||~Y | ≥
∣∣( ~X + ~Y ) · ( ~X + ~Y )

∣∣ = | ~X|2 + |~Y |2 + 2 ~X · ~Y

⇒ | ~X||~Y | ≥ | ~X · ~Y |

This is the Cauchy-Schwarz Inequality for arrows. For arrows, it is obviously
true since | ~A|| ~B| ≥ | ~A|| ~B|| cos θ|

• Now we repeat the above for the case of general complex vectors. The Triangle
Inequality becomes:√

〈X |X 〉 +
√
〈Y |Y 〉 ≥

√(
〈X|+ 〈Y |

)(
|X〉+ |Y 〉

)
• We then square this and get the Cauchy-Schwarz Inequality as above:

〈X |X 〉 + 〈Y |Y 〉 + 2
√
〈X |X 〉 〈Y |Y 〉 ≥

∣∣(〈X|+ 〈Y |)( |X〉+ |Y 〉
)∣∣

= 〈X |X 〉 + 〈Y |Y 〉 + 〈X |Y 〉+ 〈Y |X 〉

⇒
√
〈X |X 〉 〈Y |Y 〉 ≥ 1

2

∣∣ 〈X |Y 〉+ 〈Y |X 〉
∣∣

This is the Cauchy-Schwarz Inequality for a general complex vector space.

The Uncertainty Relation
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• The standard deviation of a probability distribution is defined as:

σ2
x ≡ (x− x)2 =

∑
i

(xi−x)2P (xi) =
∑

i

x2
iP (xi)− 2x

∑
i

P (xi) +x2
∑

i

P (xi)

=
∑

i

x2
iP (xi) − x2 = x2 − x2

• In a homework problem, using the Cauchy-Schwarz Inequality with |X〉 ≡ Â |ψ〉
and |Y 〉 ≡ iB̂ |ψ〉, you showed that for any two Hermitian operators Â and B̂,
we have:

σAσB ≥
1

2

∣∣〈ψ| [Â, B̂] |ψ〉
∣∣

• In the specific case of the operators x̂ and p̂, this gives the well know Heisen-
berg Uncertainty Principle:

σxσp ≥
1

2

∣∣〈ψ| [x̂, p̂] |ψ〉∣∣ =
h̄

2

• You also showed in a homework problem that for Gaussian distributions the
inequality is saturated and we have equality:

σxσp =
h̄

2

• For any distribution other than Gaussian:

σxσp >
h̄

2
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