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Abstract

I describe a computer algebra subsystem speci�cally designed for use by a tutorial

system for introductory physics quantitative problem solving. It is capable of solving

the systems of equations involved in such problems, checking the validity of equations

the students enter, investigating whether an equation is independent from a set of

other equations, and if not which equations it depends on, and �nally providing tools

to help the student with algebraic manipulations, including a \solve-tool" that solves

her equations.

The ability to determine dependence of equations is used during problem generation

in providing information for the solution-path generating module, and later during

tutoring so the help module can model which equations the student appears to know.

One important feature of our algebra system is that it deals with the dimensional units

of physical quantities throughout.

An important change from a previous system is in the meaning of \correctness"

of an equation and in the meaning of which equations it can be derived from. An

evaluation of the theoretical di�erences is given here, while an evaluation of the e�ect

on student feedback will be given in a subsequent publication.

Introduction

This paper describes an algebra system designed to be integrated into an intelligent tu-
toring system (ITS) for helping students do quantitative problems in introductory col-
lege/university physics courses. The particular tutoring system involved is Andes2, a
revision of the Andes tutor[1, 2, 3] developed at the University of Pittsburgh and the U.
S. Naval Academy. The issues addressed here are likely to be of use in any tutorial sys-
tem designed to deal in some generality with science or engineering problems that involve
algebraic equations among physical quantities.

Andes is designed to accept a formalized description of a problem, from which, with
the help of a knowledge base of physical principles, it constructs a set of solution paths,
as well as a set of equations. It has a user interface that allows the student to de�ne
variables, draw vectors, and write equations. It also allows the student to request help,
and gives feedback and hints in response to student actions. To do this, the help system
needs to be able to answer the questions

�Permanent address.
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� Is the equation the student wrote down correct?

� What can we conclude the student knows of the solution path from what she has
written down?

� Does adding a given equation advance the solution of a problem beyond what is
already speci�ed by the previous set of equations?

Andes is designed to let the student proceed with the solution of a problem, de�ning
variables and axes, and writing down relevant equations, without interference for as long
as the student is on an acceptible path and is writing down correct things. It does give
feedback for each student entry by turning the entered objects from black to green if correct
or red if not. Upon seeing her input turn red, a student might spontaneously correct what
is wrong, or ask \what's wrong with that". In de�ning variables, the system requires
that the variable correspond to a physical quantity that could be relevant to solving the
problem, as enumerated by Andes' solution-generating module. The student's equation is
only accepted if it is given in terms of variables the student has already de�ned. Thus any
student equation received by the algebra package will be in terms of recognizable variables.
A crucial task for the tutoring system is to be able to distinguish correct equations from
incorrect ones.

Correctness of equations

In earlier versions of Andes the correctness of student equations was judged by whether the
equation was equivalent to one on a list of all possible equations that could be generated
from the basic, or \canonical", equations produced by the knowledge base from the prob-
lem speci�cation[5]. In generating the derived equations, the generator kept track of the
canonical equations used. If the student's equation could be found as a simple algebraic
manipulation of one of the equations on this list, it was considered correct, and which
equations it depends on determined by the entry in the list. Generating such a list proved
unwieldy on all but very small problems.

The new algebra system takes a di�erent approach. We de�ne an equation to be
correct if it is true given the problem speci�cation. The tutor may, under some conditions,
object to a correct equation as being premature or inappropriate, but it must always
object if the equation is incorrect. As the problem speci�cation implies the solution, the
correctness of the student's equation is judged by simply plugging in the numerical solution
and evaluating the student's equation. As correctness in indicated by turning the equation
green and incorrect equations are turned red, we call this approach \color-by-numbers".

How this new approach di�ers in its answers from the criterion of derivability will be
descussed in later sections.

Physical dimensions (units)

One of the basic techniques physics teachers try to impart to their students is that they
should always check that their equations and values have consistent physical units. I
recently overheard two otherwise intelligent sounding adults trying to recall the formula
for the area of a circle and coming up with 2�r. It had probably been nearly a decade
since their geometry class, so forgetting the formula might be understandable, but they
should know that area is measured in square inches or square meters, while the radius is
in inches or meters, not squared. And of course we all recall the $125M mission to Mars
lost because the required thrust was calculated in pounds, but the units left o�, and only
that number of newtons was applied. So it is very poor pedagogy to have a tutorial system
that ignores units.
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In Andes, when a student speci�es a variable, she describes the physical quantity it
represents, but the tutor does not at that point ask what units the quantity is measured
in. When the student writes an equation giving a numerical value for a quantity, however,
she must include appropriate units. The algebra syatem, in checking that equation, checks
that the units are correct for the physical quantity. In any other equation, it also checks
that the units are consistent. In fact, it objects to dimensional inconsistency before any
check on the numerical validity of the equation.

Dependence of equations

As the Andes tutoring system wants to be able to help the student make progress on a
problem when the student gets stuck, it provides \what's next" help. To do this, the system
needs to have a student model telling which of several possible solution paths the student
has been pursuing, and how far along that path she is. The available evidence for this is
what variables have been de�ned, what axis choices have been made, and what equations
have been entered. The algebra system can help in analyzing correct student equations to
see which of the canonical equations are necessary to derive the student's equation. It does
that by examining whether a speci�c equation is algebraically dependent or independent
of a set of canonical equations. The new algebra system answers this by a di�erent method
than that previously used, which was based on the table of \all possible" derived equations,
and it can occasionally produce di�erent results. These di�erences between this lookup-
table method and our new method, described below, will be investigated in the forthcoming
article[6].

The dependence-checking facility is also used at an early stage in problem devel-
opment, when a problem is being readied for the tutor by the solution-path generating
module. This module needs to see if adding an available equation increases what is known
about the solution, or whether, because the equation is dependent on those already used,
it is redundant with what is already known, and provides no new information.

The method we use for checking independence requires that the system have a solution
of the equations involved. As solving an system of equations is a diÆcult problem, and as
the solution to the full problem is a solution to any subset of the canonical equations, a
solution to the full problem will suÆce. That solution is also required by our method of
checking student equations. Thus the �rst task of the algebra system for any problem is
to solve the system of canonical equations.

Solve-tool

The equation-solving ability of the algebra system may also be employed to o�er the
student help in algebraic manipulations. Andes provides several \solve-tool"s of varying
power available to the student.

Outline

In the rest of this paper, I will discuss these aspects of the algebra system:

� How it tries to solve the set of equations

� How it checks correctness

� How it handles physical units

� How it judges the independence of an equation from a set of other equations.

� How it provides algebraic manipulation help to the student.
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� An evaluation of the theoretical di�erences in behavior of the new methods of equa-
tion checking and dependency determination.

Solving equations

There are, of course, many very highly developed computer algebra systems with more than
enough mathematical sophistication for freshman physics problems. Our �rst thought for
handling the problem of �nding the solution to the canonical equations was to use Maple[4]
to handle the algebra manipulation. We found, however, that Maple was unable to solve
automatically what appeared to be simple equations with inequalities; for example, it
failed to give an explicit answer on

vx = �vm; v
2

x = 10; vm =
q
v2x; with vm > 0;

a set of equations which occurred in a one-dimensional kinematics problem, where vm is
the magnitude of the velocity known to be moving in the negative x direction. When such
problems arose in more complicated sets of equations, Maple failed to give any solution
at all. The failure of Maple, even with tech support, to handle such problems encouraged
us to look for alternatives. We chose to develop our own algebra system not only because
this would allow us to add whatever methods we found we needed, but primarily because
most of the known systems do not have built in support for physical units1.

Solving a set of equations in general is not an easy task2, as witness the fact that
even very sophisticated systems can fail on very easy problems. As I was not prepared
to launch a Maple sized e�ort, I needed to see if we could restrict our methods and still
handle the full scope of problems we expect to ask freshmen to solve.

Examining the problems that were already in Andes at the time we started, 115
problems in mechanics, I found that

� The vast majority of the equations were either assignment statements, e.g. m = 4
kg, or could be reduced to assignment statements by substituting in the values of
other variables already given by assignment statements. In fact, 70% of the problems
could be completely solved using only this method.

� Once the variables given by assignment statements are replaced by their numerical
values (with units), there will likely be simultaneous linear equations, which can be
used to further reduce the number of variables. This in fact results in complete
solutions of roughly half of the problems not solved by recursive substitution of
assignment statements alone.

� There is no one method that handles most of what is left. Some involve nonlinear
equations in a single variable, solvable by inverse functions or numerical methods.
There are pairs of equations involving sin � and cos �, which can be divided, and
there are pairs of quadratic polynomials in two variables, which can be used together.
By trying various common methods, all the problems in Andes can now be solved
automatically.

It needs to be emphasized that this method the algebra system uses to solve the
equations is not the way we want students to try to solve the problem. Students are

1The just-released (June 1, 2001) version, Maple7, has a new package to support units.
2In fact, it is an impossible task. A general �fth order polynomial cannot be solved algebraically, and

while that does not preclude a numerical solution if its coeÆcients are known, it does preclude one if the the
coeÆcients are other unknown variables. There are methods for dealing with speci�c classes of equations,
in particular with equations that are linear, even in a large set of variables. But while the majority of our
equations are linear, not all of them are. Nor are they all polynomials.
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encouraged to plug in given values only at the end, the exact opposite of what the computer
is doing. The major reason for the algebra system to do otherwise is that the computer
deals with numbers far better than with algebraic expressions. This is not the way humans
ought to work, although sadly many students cling to their preference for working with
numbers, rather than with algebraic expressions.

There is another issue that might trouble one about relying on an algebra package that
desperately tries to �nd numerical values for all variables. Does that approach preclude
the use of problems with parameters? Parameters are physical quantities that do not
have known explicit values, and whose values are not determinable from the information
given. When a physics problem involves such parameters, it may be asking for the value
of a sought quantity as an algebraic expression depending on the parameters. There are,
however, also cases in which the answer is una�ected by the value of the parameter. For
example, in the elastic scattering of a cue ball o� another billiard ball initially at rest,
one may ask for the �nal velocity of the cue ball as a function of the two inuencing
parameters, the initial velocity and the scattering angle. The answer is una�ected by the
third parameter, the common masses of the balls. Even though the answer is not a�ected
by the mass, variables that are essential to solving the problem, namely the momenta of
the balls, are a�ected, so that the complete solution of the set of canonical equations does
require knowledge of the mass.

Our algebra system would have a very hard time solving a problem such as this if
forced to keep all the mentioned parameters as algebraic variables. Fortunately, we do
not have to do so. We sidestep this problem by assigning each independent parameter an
arbitrary \ugly" value. The student never sees this value, but as her formulae are supposed
to work for all values of the parameter, they must work for our arbitrary numerical ones
as well. As we will see in the next section, this method does not limit us from anything
we would like to do, although it does preclude us from giving the student the answer, if it
is a�ected by the parameter.

Checking student equations

As I mentioned, earlier versions of Andes tried to enumerate all correct equations and
judge each student equation entry by whether it was equivalent to one on that list.

This requires combining the set of canon-
ical equations in all combinations[5]. Un-
fortunately, the number of canonical
equations involved, even in fairly simple
physics problems, is much larger than a
typical human solver would imagine. For
example, in the problem shown in Fig-
ure 1, Andes2 generates 45 equations in
41 variables. The number of possible
ways of combining these into a correct
equation is immense. Thus in recent ver-
sions of Andes the correctness of student
equations has been judged by checking
them against the correct solution of the
problem | that is, the correct values of
the 41 unknowns are substituted into the
student equation and correctness is deter-
mined by whether the two sides balance.

20 kg

25o

30 kg

An inclined plane making an angle of 25.0 de-

grees with the horizontal has a pulley at its top.

A 30.0 kg block on the plane is connected to a

freely hanging 20.0 kg block by means of a cord

passing over the pulley.

Compute the distance that the 20.0 kg block

will fall in 2.00 seconds starting from rest. Ne-

glect friction.

Fig. 1

One might ask whether it would be more appropriate to de�ne correct as derivable
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from the \canonical" equations, which follow from the problem statement and known
physical principles, by some set of algebraic manipulations. The answer depends on exactly
what we mean by derivable. If, on the one hand, we mean that there exists an algebraically
correct procedure for deriving from the input the student's equation, then we can give a
formal proof that derivability is equivalent, in our context, to evaluating as green in color-
by-numbers. For in all our problems we can solve the problem by algebraically correct
steps, so we can write the solution for all variables, vi = fi(f�jg), where fvig is the set of
all variables in the problem, f�jg is a (possibly empty) set of underdetermined parameters,
and fi are a set of explicitly determined functions. If the student has written an equation
equivalent to S(fvig) = 0, and if we can show that S is indeed 0 when we substitute
fi(f�jg) for vi in S, then, because substituting one expression for another to which it is
equal in an algebraic expression is a legitimate algebraic step, we have derived S(fvig) = 0.
Thus algebraically correct derivability is equivalent to color-by-number.

On the other hand, we might mean something else by derivability. We might mean that
the student's equation could arise in a derivation starting from the input and proceding
by rationally motivated steps towards �nding a solution. If her equation could never arise
in that context, the student should not be writing it down. But this de�nition requires
that we specify some �nite set of methods by which such manipulations should proceed.
For example, we would permit solving one equation for one variable in terms of the other
variables and substituting the results into other equations. This, however, can easily lead
to a divergent procedure, so any attempt to generate all satisfactory equations will need
to use a more restrictive method. I will discuss the di�erences and limitations of these two
methods in the Evaluation section.

Let us return to the color-by-numbers method of determining if a student's equation
is correct. Naturally this method requires �rst �nding the solution to the problem. Once
our system has a numerical value for all of the variables that enter a problem, we can
easily check if a student equation is correct by the simple procedure of plugging in the
values and seeing if the equation balances.

The method of solution substitution for equation checking also works well with our
method of assigning secret messy values for parameters. As long as the values chosen are
not ones that could be stumbled upon, a student equation that is correct only for some
value of the parameter has a negligible chance of being correct for ours.

This raises what is the one diÆcult issue in equation checking by substitution | how
close do the sides need to be to balance? Our evaluations, of course, are not precise, but
use standard double precision arithmetic with an accuracy of about one part in 1015. If
the left hand side of the equation evaluates to 10�7 and the right hand side to zero, does
this balance? Yes for the problem with the momentum of an aircraft carrier (in kg�m/s),
but no, if this problem concerns the mass di�erence of a grain of salt and an electron,
measured in kg. In our checking of equations we also calculate maximum possible errors,
though our algorithm is not perfect in estimating them.

In order to avoid marking as correct wrong equations that just stumble close to the
right answer, we want to make sure the tolerance we allow for agreement is held as tight
as possible. This is not a serious problem for equations that do not contain numerical
calculation by the students, for the computer calculations made to verify the equation
are accurate enough to permit using very tight standards for agreement. But we cannot
expect the students to do their calculations to 15 �gures, or even to specify an answer
to such accuracy. We will allow �nal numerical answers to have a leeway reasonable for
the quantity in question. We want the student to avoid plugging in numerical values,
except for 0's, 1's and 2's, until giving the �nal answer, so for intermediate equations we
can require machine accuracy, while asking for, perhaps, three signi�cant �gures on �nal
numerical answers.
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Incorporating physical units

One of the major lessons of problem solution strategy in physics is to check equations
for dimensional consistency. Thus incorporating physical units as an integral part of the
tutoring system in general, and into the algebra subsystem in particular, is essential for
good pedagogy in physics. A system that is able to point to dimensionally inconsistent
operations can provide important feedback on what is wrong with an incorrect student
equation.

When physicists or engineers use a computer to do their calculations, they have already
veri�ed their equations and chosen appropriate units, so except for oversights like the Mars
disaster, it is generally suÆcient to have their programs work with pure numbers. Thus
the major tools for calculation do not integrate units in any essential way. But we want
a system that will recognize that K = mv is the wrong formula for the kinetic energy
(K = 1

2
mv2) even in a problem giving the numerical value for v, measured in m/s, as 2.

It can know this because the left hand side of the equation has units kg�m2=s2 while the
right hand side has units kg�m/s.

Internally, our algebra system assigns to each term in an expression units as measured
in terms of the fundamental International System (SI) units, meters, kilograms, seconds,
coulombs, and degrees Kelvin. As long as all variables are expressed in such units, ordinary
algebra, including powers of the units, will be consistent, and illegal operations, such as
trying to add terms with di�erent dimensions, are a clear sign something is wrong with
an equation. This should be very helpful in giving reasons that an equation is wrong.

In Andes1, as in many other systems, the lack of treatment of units meant that
one needed to assume that all units in the problem were consistent. If you look at the
problems in elementary physics books, you will �nd that the overwhelming majority of the
ones before the modern physics sections do employ only SI standard units, but even there,
there are some values for time speci�ed in minutes. I doubt if even European children have
a good feel for the speed of their favorite car in m/s. And there is one quantity for which
the \standard unit" is quite unfamiliar to freshman | angles. Angles are dimensionless,
as can be seen from the formula for the length s of an arc of angle � and radius r: s = r�.
As s and r are both measured in meters, � is measured by a pure number. But how big
is an angle of 2? It is 2 radians, not 2 degrees. Nonetheless degrees are used extensively
in stating physics problems. Thus Andes has been inconsistent in its requirement that all
quantities are measured in standard units, and would have run into troubles soon, when
dealing with angular velocities and momentum.

For both these reasons, but most crucially to allow degrees, the algebra system allows
for quantities to be speci�ed in non-standard units. All internal calculations are done in SI
units, but a preferred set of units can be speci�ed for each variable, and numerical values
can be given together with any of a large set (though not at all a complete set) of units.

Modeling which equations the student knows

Judging the correctness of the student equations, as we have seen, is straightforward once
the problem solution is known. More sophisticated information is needed when the student
asks for \next step help". At this point the help system has to judge which pieces of the
problem the student has already correctly used. In particular it must judge which of
several possible solution paths the student is pursuing. It must also distinguish which
of the canonical equations she has already used, and which others she might need to be
prompted to �nd. Here too, the �rst version of Andes tried to extract this information
from its table of all possible ways of combining the basic equations, but this method breaks
down on all but very simple problems. Our algebraic system is able to judge independence
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of equations, however, and therefore it can provide information | not always unique
answers but sets of possibilities | on which canonical equations were used by the student
in creating the entered correct equation.

One might have the impression that the student, not very sophisticated and entering
equations with as little contemplation as possible, would be entering the basic equations
with little prior calculation. It is surprising, however, how much removed from the basic
equations even a simple equation is. For example, in the problem described above, one step
in the solution is to write Newton's second law, (F = ma) for the hanging block. In terms
of the tension T in the rope, the mass m20 of the block, the gravitational acceleration
constant g and the magnitude of the downward acceleration a, a student might quite
reasonably write

m20g � T = m20a:

This, however, is not one of the basic equations. For one thing, the weight forceW has had
its value replaced using another known law, W = m20g. But more importantly, Newton's
law applies to components of forces, not their magnitudes. In fact, the closest we can come
to the student's equation in the canonical ones is

Wy + Ty = m20ay

To get to the student's equation, we also need the canonical equations

ay = a sin �a; Wy = W sin �W ; Ty = T sin �T

�a = 270o; �W = 270o; �T = 90o

W = m20g

Thus the student has actually combined eight canonical equations in her head in writing
down a fairly simple equation.

If, after writing down this one equation, or perhaps after including a few equations
for the block on the ramp, the student is stuck and asks for help, the help system needs to
know that she has correctly employed the eight equations mentioned, and not waste her
time and patience tutoring her on what she already knows. With 45 equations to consider
hinting at, how does the system know that these 8 are not worth looking at?

The method we use involves �nding minimal sets of canonical equations from which
the student's equation could be derived. One way to judge this would be to try many
algebraically correct manipulations to see if we could arrive at the student's equation,
but that is a very open-ended task. We can conclude that a student's equation could
have been derived from a set of other equations if it provides no independent restriction
on the solution set. Equations are restrictions of the possible collection of values of the
variables. If a set of equations so restrict the solution space of the variables that the
student's equation provides no further restriction, then her equation is a consequence of
the others. If that is not the case, then she could not have legitimately arrived at her
equation from the set, for there are values of the variables for which all the equations in
the set are true, but her equation is false.

Thus if we can determine one unique minimal set of equations with a solution space
contained in the solution space of the student's equation, we can reasonably conclude
that the student knows those equations. Unfortunately there may be more than one such
minimal set, in which case there are alternate sets of equations the student may have
used. These can often depend on which of several possible paths to solving the problem
the student has embarked upon. The algebra system cannot decide questions like this, but
it can enumerate the possibilities for the help system.

The method of determining the solution space of an arbitrary set of equations is again
nontrivial, or impossible, as we mentioned for the special case of �nding the solution of
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the full problem. This problem becomes much simpler if the equations are linear. Let us
take as an example a situation with three variables, x, y, and z. A linear equation has the
form

Eq. 1: a1x+ b1y + c1z + d1 = 0;

where a1, b1, c1, and d1 are known constants. A linear equation reduces the space of
variables by one dimension, so here Eq. 1 restricts the three dimensional space of possible
(x; y; z) values to lie on a plane. If we have another equation on these variables

Eq. 2: a2x+ b2y + c2z + d2 = 0;

it also restricts the values to its plane. To satisfy both equations, the point (x; y; z) must
lie on both planes, that is, on their intersection. Usually this will be a line of intersection,
when the equations are independent. But it is possible the two planes are the same, in
which case the second equation adds no information, or they might be parallel, in which
case there is no intersection and therefore no solution. That will not happen in our case,
because we will not present the students problems that have no solution. Note that the
equations are independent if the planes are not parallel, which might also be stated that
their normals are not parallel.

Suppose we have two equations, which we already know to be independent, and we
want to know if the student's equation

Eq. S: aSx+ bSy + cSz + dS = 0;

is independent of our two equations. Her equation also determines a plane on which
the solution must lie (if it is a correct equation). If that plane intersects the line of
intersections from Eq. 1 and Eq. 2, there are points on that line that do not satisfy the
student's equation, and therefore her equation is independent and not derivable from the
others. On the other hand, if that line of intersection lies within the plane solving the
student's equation, her equation is not independent and can be derived.

This geometry may make the situation clear but the computation not. Fortunately,
the condition for dependence of the student's equation is that the normal to her plane
is a linear combination of the normals of the equations in the set. This is true even if
we have many more equations and variables involved and would have even more trouble
picturing the geometry. Fortunately, determining if a vector in N dimensions is a linear
combination of a set of P other such vectors is an easy order (PN) or (P 2N) calculation3,
not prohibitive.

Life would be easy if all equations were linear. Unfortunately, even elementary physics
problems involve nonlinear equations, and the method just described cannot be directly
applied. It is still true, generically, that each equation restricts the space to a surface of
one dimension less that the full space, but that surface may be curved. It is also still true
that a possible solution point on the surface is prevented, by the equation, from moving
o� in the direction of the normal to the surface at that point, but as the surface is curved
the normal changes direction from point to point on the surface.

We may still use the method of the linear equations, however, if we focus our attention
on small deviations from the solution point, P0 of the full problem, which the algebra
system has already provided to us. We expect in all our equations, fi(v) = 0, fi to
be di�erentiable (probably analytic) at the solution point, so we may expand everything
by Taylor expansion to �rst order in the variables. The constant term is zero, and the

3Order P 2
N for the initial setup of the set, and then order PN for subsequent queries on that set. The

algorithm used is to reduce the vectors to row echelon form while entering them into the set. This makes
the checking of equations against that set more eÆcient. We expect the help system to make more queries
on �xed sets than changes in the sets.
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�rst order term is speci�ed by the gradient of fi. As each equation becomes linear to
this order of approximation, we can use the method discussed above. The normal to the
equation solution surface is the easily calculated gradient at P0. If the student equation is
independent in the linear approximation there is a point P for which her linearized equation
has a discrepancy �, but the linearized canonical equations are all exactly correct. Every
point on the line segment between P0 and P will also satisfy the linearized canonical
equations and have a discrepancy �� in the student's linearized equation, where � is the
fraction of the distance jP0P j that the point is away from P0. For points suÆciently close
to P0, the exact equations should di�er from the linearized ones by amounts that go to
zero faster than the �rst power of �, which contradicts the idea that full student equation
would have no discrepancies on the solution space of the canonical equations. Thus the
student equation must be independent. Generically, the reverse will be true as well | if
the linearized equations are dependent the full ones will usually be as well, but in this
direction there are exceptions, as we discuss below.

Let us consider a simpler problem to illustrate how the dependence calculations can
help determine what the student has used. Consider this problem:

A car starts from rest and accelerates at a constant rate to 20 m/s in a
distance of 50 m. What is the acceleration of the car?

Some basic equations that deal with the kinematics of linear motion at constant
acceleration are

1: v2f � v2i = 2as

2: vf � vi = at

3: s = 1

2
at2 + vit

4: s = 1

2
(vi + vf )t

while the givens here are

5: vi = 0
6: vf =20 m/s
7: s = 50 m

The solution point, which solves all these equations, is

P0 : (t; s; a; vi; vf ) = (5s; 50m; 4m=s2; 0; 20m=s):

The �rst four equations are not independent, in fact no three of them are independent. Any
two of them imply the other two. So there are many di�erent complete sets of independent
equations for this problem, depending on which two of the �rst four equations are included:

A = f1; 2; 5; 6; 7g; B = f1; 3; 5; 6; 7g; C = f1; 4; 5; 6; 7g:

D = f2; 3; 5; 6; 7g; E = f2; 4; 5; 6; 7g; F = f3; 4; 5; 6; 7g:

We will also ask about the subsets that don't include the givens,

�A = f1; 2g; �B = f1; 3g; �C = f1; 4g; �D = f2; 3g; �E = f2; 4g; �F = f3; 4g:

Suppose the student writes down s = 1

2
vf t. Plugging in the solution values gives 50 m =

1

2
20 m/s � 5 s, which is correct, so the equation is correct. From which sets could it have

been derived, and which most easily?
Rewriting the equations in the form f = left side � right side = 0, and taking the

gradient, we have
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function gradient @fi=@x, for x = (t; s; a; vi; vf )
fi t s a vi vf

1: v2f � v2i � 2as 0 �2a �2s �2vi 2vf
2: vf � vi � at �a 0 �t �1 1
3: s� 1

2
at2 � vit �at� vi 1 �1

2
t2 �t 0

4: s� 1

2
(vi + vf )t �

vi + vf
2

1 0 �1

2
t �1

2
t

5: vi 0 0 0 1 0
6: vf�20 m/s 0 0 0 0 1
7: s� 50 m 0 1 0 0 0

and student's equation:
S: s� 1

2
vf t �vf t 1 0 0 �1

2
t

Evaluating at the solution point means plugging in the values of the variables at P0, so,
dropping units here, we have:

fi t s a vi vf
1: v2f � v2i � 2as 0 �8 �100 0 40

2: vf � vi � at �4 0 �5 �1 1
3: s� 1

2
at2 � vit �20 1 �12:5 �5 0

4: s� 1

2
(vi + vf )t �10 1 0 �2:5 �2:5

5: vi 0 0 0 1 0
6: vf�20 m/s 0 0 0 0 1
7: s� 50 m 0 1 0 0 0

and student's equation:
S: �100 1 0 0 2:5

First, observe the dependence of the �rst three equations is manifest by noting that the
�rst line is 40 times the second minus eight times the third. Similarly the fourth line times
eight, added to the �rst line, gives 20 times the second. This is the statement that only
two of the four equations are independent. Next, we observe that no linear combination
of these four lines will give the student's equation; her equation is independent of the sets
�A::: �F , so she must have used one of the givens.

We can ask, for each of our complete sets of independent equations, which equations
are necessary to derive the student's, by �nding linear combinations of the gradients as
above. The answers for each set are

A : f1; 2; 5g B : f1; 3; 5g C : f4; 5g D : f2; 3; 5g E : f4; 5g F : f4; 5g

We see that it is considerably more likely that she used equation 4 than that she used two
of the �rst three. She knows at least one of the fundamental kinematic equations, and has
taken note of the fact that the car started from rest, the given vi = 0.

Thus we have seen how being able to judge the independence of equations can be
used to help determine what the student knows, and we have also seen how we can tell
whether linearized equations are independent. Unfortunately there is a small hole in this
argument | if the linearized equations are independent, so are the equations themselves,
always, as we saw above. It is also true that generically, independent equations will have
independent linearizations, but not always. For example, consider two equations in two
unknowns, whose intersection determines a solution. In the generic case, the solution
curves of the two equations will intersect, and the linearized forms of the equations, shown
by the tangent lines, will be independent.
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But in the exceptional case that
the two curves are tangent to each
other at the intersection, their lin-
earized form is shown by the sin-
gle tangent line, so the linearized
forms are not independent and do
not determine the point P , even
though the full equations do.

generic case exceptional case
1

2
1

2

P P

t

t
t

t

Two independent equations determining a solution

point P .

As this diÆculty only arises in exceptional cases, one might hope that it will not occur
in the problems we see in the introductory course. But in fact it occurs routinely in vector
problems, because the solution often involves an angle of 0 or 90Æ, which are critical points
of the cosine and sine functions. In fact, if we look back at the equations above for the
hanging block, and ask for the minimal subset of the eight equations which appear to be
required to derive the student's equation, the linearized method would not include the three
equations giving the angles. These equations are in fact needed to get ay = �a,Wy = �W ,
and Ty = T from the three equations ay = a sin �a, Wy = W sin �W , Ty = T sin �T . But
they do not appear to be needed in the linear approximation. Expanding ay = a sin �a in
a Taylor series in �a about �a = 3�=2, we have

ay = a(�1 +
1

2
(�a � 3�=2)2 + :::) � �a+ 0 � (�a � 3�=2) = �a;

where the � represents the linear approximation. Thus the linear approximation might
mislead us to thinking ay = �a does not require knowledge of �a. The problem is arising
because the solution point happens to be at maximum of the expression ay�a sin �a. The
expression happens to have a zero value and a zero derivative at the same point.

How do we deal with the sad fact that this situation, which is in some sense exceptional
and should have little probability of ever arising by chance, actually arises all the time
in the problems we assign students? Examining dependence without approximations is
a very complex issue, and even going to second order in the expansion4 would make the
calculations much larger. The variables in question are generally givens, and the help
system may be able to deal with uncertainty in whether the student has recognized these.
So the approach we have taken is this: When we calculate the gradient of each equation's
function, we also note which variables the full equation depends on. If a proposed
dependence involves only functions with zero derivatives with respect to a given variable,
but nonetheless one or more depend on that variable, the help system is warned that the
equation might depend on some equation that gives the value of that variable, in addition
to the ones it depends on in linear approximation. If only one of the equations in the
linearly dependent set involves the variable, then we can de�nitely say that for the full
equation, this dependency is incorrect, and we need to include the equation giving the
variable's value. We can also be sure of dependence it the number of variables involved is
not greater than the number of independent equations in the canonical set.

The method just described to handle the exceptional cases appears to correctly give
the dependencies in the problems we have examined so far, but it is not mathematically
rigorous. In our forthcoming article[6] we will examine the results of this method versus
the table of derived equation method of the old Andes, from logs of student entries on the
subset of problems that method was able to handle.

4While it is probably true that we would never run into the situation where the expression, its �rst
derivatives, and its second derivatives all vanish at the same point, but the function is still not identically

zero, there are in principle still these exceptional situations. In fact, the function 1�e�1=x2 has a minimum
at x = 0 where it is zero and so are all its derivatives, and yet it depends on x.
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Providing a solve tool for the students

Finally, an algebra system should be able to help the student with some of the drudge work
of actually employing the equations to derive an answer. While it is not clear pedagogically
just how much of the work the system should take o� the student's shoulders, there is no
doubt that plugging numbers into equations is something the student presumably knows
well enough not to need continual practice, and that she will appreciate having the algebra
system do it for her at her command. We have decided to implement three tools

the genie After checking that the student has entered correct equations that can deter-
mine the answer, give the answer to the student. This tool will give no explanation
of how the algebra was performed (hence its name), but for humanities majors, the
professors feel the emphasis should be on the physics principles only and not on
teaching algebra techniques

the simpli�er The student selects an equation. This equation is then evaluated by plug-
ging in all assignment statements the student has given, and the result then simpli-
�ed.

solve-and-sub This tool asks the student to select an equation and a variable solvable
within it (possibly in terms of other variables), and solves the equation for that vari-
able. Then the student can select other equations containing the solved-for variable
and have the solution substituted in and the resulting equation simpli�ed. This
would permit the student to guide the system to solve simultaneous linear equations
without it being done as black art. Thus it would probably be more suitable than
the genie for engineering students, for whom the genie might be disabled.

Various diminished versions of the genie are also available within the algebra package but
no interface for them is currently planned, so they will not be available.

Evaluation: e�ect of changing methods

As was mentioned earlier, any student equation which is colored green by color-by-numbers
has a derivation starting from the canonical equations and proceeding by algebraically
correct steps. The derivation, however, might not pass muster of any instructor examining
the result, because it might involve steps that have no motivation in solving the problem.
A tighter de�nition of derivability would require each step to be a credible step forward
in deriving an answer. The distinction is best understood with an example.

In linear kinematics, there is an equation holding if the acceleration of an object is
constant:

A: v2f � v2i = 2 � a � s;

where vf and vi are the �nal and initial velocities, a the acceleration, and s the distance
travelled. Very often a problem will state that the object starts from rest, i.e.

B: vi = 0

If the student enters the equation

S: v2f + v2i = 2 � a � s;

any instructor would conclude that the student had misremembered a sign in the equation
and mark the equation wrong. But equation S can be derived from A and B by squaring B
and doubling the result, giving 2v2i = 0, and adding that equation to A. Thus S is derivable
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by legitimate algebraic steps, but the derivation is �shy because there is no reason to take
these steps if your goal is to solve for one of the unknowns | the only possible motivation
is to justify your mistake. So the old Andes would have marked S wrong, which is good,
while the new one will mark it correct. On the other hand, the old Andes was simply
unable to generate the lists of derived equations for 27 of the 115 problems used by Andes
in the fall of 2000. How often color-by-number approves equations that should be rejected
in actual use needs to be examined. We would like to examine the di�erences in responses
which occur in student use between color-by-numbers and the comparison lists generated
by various algorithms for \all possible" derivations. We are not yet ready to do so. We
would also like to compare the imputed dependencies with those recorded by the derivation
engines. The new method for evaluating the dependency of student equations is being used
for the �rst time this fall, while the \color by number" method for determining correctness
has been used for one year. We do not currently have data for examining the e�ectiveness
in practice, but this will be discussed[6] in a forthcoming article.

Summary

A new physics tutorial system is emerging from the Andes e�ort, which will make very
substantial use of a powerful algebra subsystem. This algebra system has introduced new
capabilities for dealing with dimensional analysis, for solving systems of equations, in
particular the full physics problem, and for providing algebraic help to the students. In
addition, it is using a new method of judging, indeed a new de�nition of, the correctness
of student equations (or of possible variations thereupon) and of judging the subset of
canonical equations upon which a student equation depends. These new methods allow
much more complex problems to be handled, but the extent to which their answers di�er
in practice needs to be evaluated, as will be done in a forthcoming article.
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