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Abstract

To help a student in an introductory physics course do quantitative homework
problems, an intelligent tutoring system must determine information of an algebraic
nature. This paper describes a subsystem which resolves such questions for Andes2.
The capabilities of the subsystem would be useful for any ITS which deals with prob-
lems involving complex systems of equations. This subsystem is capable of 1) solving
the systems of equations at the level of introductory physics problems, 2) checking
the validity of equations the students enter, 3) investigating whether an equation is
independent from a set of other equations, and if not, determining on which equa-
tions it does depend, and finally 4) providing tools to help the student with algebraic
manipulations, including a “solve-tool” that solves her equations.

The ability to determine dependence of equations is first used by Andes during
problem generation, by providing information to that component of the ITS which
generates correct solutions to the problem. Later, during tutoring, it enables the help
module to model which equations the student appears to know. One new feature of
our algebra system is that it deals with the dimensional units of physical quantities
throughout.

An important change from a previous approach is in the meaning of “correctness”
of an equation and in the method of determining which equations it can be derived
from. An evaluation of the theoretical differences between the two methods, and the
pros and cons of each, is given here.

Introduction

An intelligent tutoring system that attempts to give guidance to a student in solving a
complex problem needs to be able to distinguish which pieces of a solution the student
already knows from pieces with which she might need help. If it gives guidance incremen-
tally, it needs to analyze each new input from the student, figure out which piece of the
problem this input is supposed to address, and then determine whether it does so cor-
rectly. In addition, of course, it needs to identify incorrect steps and attribute the error to
something upon which it can give help. If the set of possible correct steps is fairly simple,
it may be possible to have a list of templates for all possible correct steps, together with
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a pattern-matcher or other simple algorithm for deciding if the student’s input matches a
correct set. In a field with sufficiently rich methods, however, this may not be practical.
Correctness of inputs may then need to be judged by constraints[1]. It may be necessary
to use discipline-specific methods to formulate these constraints, as well as in analyzing
how a student has broken down a problem.

One field in which this richness of approach occurs is introductory physics at the col-
lege/university level. A major component of the educational process here is the solving by
students of quantitative problems. This requires the student to 1) analyze a physical situ-
ation, often consisting of many parts, 2) extract from general physical principles relations
among the physical quantitities, 3) assign algebraic variables to describe those quantities,
4) translate the relations into explicit algebraic equations, and finally, when a sufficient
set of equations is found, 5) use the tools of algebra to solve for the required unknown
quantity in terms of known quantities. Similar tasks will occur in homework problems in
courses in other mathematical sciences. Most of the steps have no unique correct answer.
For example, if a student uses Newton’s second law, ~F = m~a, she needs to decide to which
object or group of objects to apply it, what choice of axes to use to write the vector equa-
tion in terms of components, and what variable names to use for the physical quantities
involved. Furthermore, students rarely write down the application of physics principles
in their most fundamental form, but rather they combine a number of observations and
write down only a composite equation. While this is certainly to be encouraged to some
extent, it greatly complicates the task of identifying the student’s input. An example will
be given at the end of the next section. In the systems I will discuss, the student input
is primarily in the form of defining variables and entering equations. As mentioned, in a
complex problem, not only are the individual equations each describable in many forms,
but there are myriad sufficient sets of equations, with no one-to-one mapping betweeen
individual equations of two sufficient sets. Thus modeling students’ knowledge is much
more complex than simply checking off equations, one at a time, as each student equation
is entered. Acceptable student solutions are not describable as successive steps along a
predetermined path, but rather involve generating sufficient correct constraints, in the
form of equations, to determine the answer.

There are a number of systems designed to deal with homework problems in introduc-
tory physics. Most[2, 3, 4] are designed to give right/wrong feedback on multiple choice
or numeric answer questions only. WeBWorK[5] can handle symbolic expressions as well.
These all consider only the student’s final answer, and cannot provide help along the
way. Of a more tutorial nature are the “Personal Assistants for Learning” (PALs) of the
CIRCLE group [6], which lead the student through a tightly structured interaction with
multiple choice responses. The PAL developers explicitly renounce artificial intelligence,
so each problem’s tutorial path is explicitly authored. Real artificially intelligent tutorial
systems have been developed for teaching algebra and other mathematics at the pre-college
level[7, 8]. In the 1970’s, a great deal of effort was made to produce an ambitious system
for teaching physics, called Plato[9, 10], but disappointing results, together with the huge
expense of computers at that time, seem to have killed it. To our knowledge, the only cur-
rent system designed for reasonably free problem solving at the level of university physics
is the ANDES tutor[11, 12, 13, 14] developed at the University of Pittsburgh and the U.
S. Naval Academy, and used at the USNA.

Andes and its algebra subsystem

This paper describes a subsystem designed for integration into Andes. The subsystem
provides an oracle for answering questions of an algebraic nature that the full system
needs in order to determine correctness of student steps, identify the mistaken steps, and
to model the understanding of the student so as to effectively provide help to the student.
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In Andes, the full system also needs the information the subsystem can provide about
independence of equations in order to generate solution paths and a constraint network of
the variables and equations in a problem. The particular system in which this subsystem
has been used, first in the fall of 2001, is Andes2, a revision of Andes. Andes’ previous
method for finding this information could not handle complex problems. The goal of the
new subsystem is a strong and robust tool for providing the information without limiting
the scope of physics problems presented. The issues addressed here are likely to be of use
more broadly, in any tutorial system designed to deal in some generality with science or
engineering problems that involve algebraic equations among physical quantities.

Preparing a problem in Andes

There are two stages in the use of Andes for any given physics problem. The first is the
preparatory stage. Andes accepts a formalized description of a problem, from which it
develops a solution and the structures it will need in the second phase, the tutoring of
students on the problem. In the preparatory stage, it uses a knowledge base of physical
principles to construct a constraint network, consisting of variables and “canonical” equa-
tions in those variables, which is sufficient to find the solution to the problem. It also
generates a set of solution paths, or more accurately, a set of partially ordered subsets of
the constraint network. Each path includes a subset of equations from which it is possi-
ble, algebraically, to extract the value of the required physical quantity. To generate this
information, the system needs help from the algebra subsystem

• to determine whether adding a given equation advances the solution of a problem
beyond what is already specified by the previous set of equations. Roughly speaking,
each new equation will determine the value of one previously unknown variable, at
the possible expense of introducing new unknown variables. But it will only do so if
the equation is independent of the equations already in the set.

• to determine whether the set of equations is sufficient for solving the problem. In
particular, the methods used by the new algebra subsystem require an actual solution
for all the variables in the problem, so the subsystem must be able to solve systems
of equations.

The preparatory procedure produces a file which contains the problem solution, a list of all
variables relevant to the problem, and the canonical equations, which together constitute
the constraint network. It also lists the solution paths. Thus it stores all the problem-
specific information necessary for the tutoring system to present a given problem to the
student and to provide help to the student in working through the solution of that problem.

Andes’ tutoring stage

Once this is done, Andes is able to tutor a student on the problem. It has a user interface
that allows the student to define variables, draw vectors, define axes with which to describe
these vectors, and write equations. Andes is designed to let the student proceed with the
solution of a problem without interference for as long as the student is on an acceptable
path and is making correct entries. It does give feedback for each student entry by turning
the entered objects from black to green if correct, or red if not. Upon seeing her input turn
red, a student might spontaneously correct what is wrong, or ask “what’s wrong with that”.
In defining variables, Andes requires that the variable correspond to a physical quantity
that could occur in trying to solve the problem, as enumerated by the preparatory solution-
generating procedure. The student’s equation is only accepted if it is given in terms of
variables the student has already defined. Thus any student equation received by the
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algebra subsystem will be in terms of recognizable variables[15]. One crucial task for
the tutoring system is to be able to distinguish correct equations from incorrect ones.
In addition to “what’s wrong” help, Andes can provide “what’s next” help on request,
when the student needs hints as to how to proceed. Besides tutoring help, the system can
provide help of a more mechanical form — it can help the student solve the equations she
has written.

Typically the solution of a problem by a student is an involved process, taking on
average more than 20 minutes, with the tutor providing about 8 explanations[16].

To provide this help, the system needs to be able to answer the questions

• Is the equation the student wrote down correct?

• What can we conclude the student knows of the constraint network from what she
has written down?

• Can a set of equations be solved for all variables, either in explicit numerical form
or in terms of a few undetermined parameters? If so, it must provide the solution.

Goals

It is the algebra subsystem which provides specific information on the questions discussed.
The subsystem is therefore designed to determine the correctness of submitted equations,
based on the “canonical” equations, and to provide information about the student’s knowl-
edge of these equations. The new subsystem uses new methods, at least compared to the
older version of Andes, for determining correctness and attributing knowledge to the stu-
dent. These methods are based on the following observation: If any set of canonical
equations has a solution space contained within the solution space of the student’s sub-
mitted equation, her equation can be derived from the equations in the set. That is to say,
the equation can be derived from any set of which it is not independent. Furthermore,
this can be determined without constructing such a derivation, which means that much
more complex systems of equations, such as arise from multistep problems, which were
previously intractable, can be handled by the new algebra system.

In addition, the new algebra system incorporates physical units in all calculations,
and includes tools to provide algebraic help to the student.

In the next section, we will elaborate on what Andes needs from its algebra subsystem,
what use it can make of this information, and why this information is not trivial to find. In
the following section, we describe how the subsystem determines the necessary information.
Following that, we evaluate the advantages and disadvantages of our new methods of
judging correctness and dependence, compared to the previous method of generating a list
of all derivable equations during the preparatory stage.

Requirements and uses of the algebra subsystem

In this section, we describe what questions Andes asks of the algebra subsystem, and what
use it makes of the answers. The demands made on the algebra system are

• Given a set of correct equations, to solve, as much as possible, for all the variables in
terms of “known” quantities. Known quantities may be either numerically given or
described as “parameters”, that is, independent undetermined quantities, in terms
of which solutions may be expressed.

• to determine the correctness of an equation, given the set of correct canonical equa-
tions and their solution.
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• to give reasons an incorrect equation is incorrect (dimensional consistency).

• to determine whether a correct equation might have been derived from a given set
of independent correct equations, and if so, on which equations within the set it
depends.

What use is made of the answers will be discussed in this section, while the methods
used to determine them will be discussed in the next.

Solving a set of equations

There are several reasons why Andes needs a system which can solve the algebraic equa-
tions. One, of course, is to judge whether a presented answer is correct. Another is to
be sure, when it generates what it believes is a complete solution path, that the required
information can in fact be extracted from the equations.

One more use Andes makes of the solving ability of its algebra subsystem is to provide
a tool for the student. The Physics professors currently using Andes regard their task as
teaching the physics concepts, and not in exercising the algebra skills of their students.
Thus they regard the primary task for the student in solving a problem is to write down a
sufficient set of equations which follow from physics principles as applied to the problem
at hand. They are happy to provide the students with a tool, even if it is a black box,
which will solve the equations they have written.

Andes provides several “solve-tool”s of varying power available to the student, to
eliminate some of the drudge work of actually employing the equations to derive an answer.
While it is not clear pedagogically just how much of the work the system should take off the
student’s shoulders, there is no doubt that plugging numbers into equations is something
the student presumably knows well enough not to need continual practice, and that she
will appreciate having the algebra system do it for her at her command. We have decided
to implement three tools

the genie After checking that the student has entered correct equations that can deter-
mine the answer, give the answer to the student. This tool will give no explanation
of how the algebra was performed (hence its name).

the simplifier The student selects an equation. This equation is then evaluated by plug-
ging in all assignment statements the student has given, and the result then simpli-
fied.

solve-and-sub This tool asks the student to select an equation and a variable solvable
within it (possibly in terms of other variables), and solves the equation for that
variable. Then the student can select other equations containing the solved-for vari-
able and have the solution substituted in and the resulting equation simplified. This
would permit the student to guide the system to solve simultaneous linear equations.
Thus it would probably be more suitable than the genie for engineering students, for
whom the genie might be disabled.

Various diminished versions of the genie are also available within the algebra subsystem
but no interface for them is currently planned, so they will not be available.

Finally, there is an internal reason for the subsystem to be able to solve for the
values of all the variables in the system. The method used to determine correctness
and independence of equations involves numerical evaluation about the solution point,
so certainly that point must be known. As many problems involve scores of variables
in addition to the one sought in the problem statement, it would be onerous to ask the
creator of a problem to provide a full solution.
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Solving equations is, of course, what one expects of a computational algebra system.
For a discussion of why commercial computational algebra systems seemed inadequate
to Andes’ needs, and why the concerns of our solver are rather different from those of
computational algebra systems, see the section “How we solve equations” below. But one
issue is worthwhile discussing here, for those uninterested in the other technical details.
That pertains to the treatment of parameters.

Parameters are physical quantities that do not have known explicit values, and whose
values are not determinable from the information given. When a physics problem involves
such parameters, it may be asking for the value of a sought quantity as an algebraic
expression depending on the parameters. There are, however, also cases in which the
answer is unaffected by the value of the parameter. For example, in the elastic scattering
of a cue ball off another billiard ball initially at rest, one may ask for the final velocity of
the cue ball as a function of the two influencing parameters, the initial velocity and the
scattering angle. The answer is unaffected by the third parameter, the common masses of
the balls. Even though the answer is not affected by the mass, variables that are essential
to solving the problem, namely the momenta of the balls, are affected, so that the complete
solution of the set of canonical equations does involve the mass as a physical quantity.

Our algebra system would have a very hard time solving a problem such as this if
forced to keep all the mentioned parameters as algebraic variables. Fortunately, Andes does
not require that we do so. For the purposes of checking that a solution exists, or that an
equation is correct, or for determining dependence, it is enough to answer those questions
when the parameters are set to particular numerical values, as long as the answer to the
questions does not depend on the values used. The solver assigns to each independent
parameter a “ugly” value, one which could not conceivably arise by solving an incorrect
equation the student might write down for the variable in question. In the problems Andes
addresses, this is enough to ensure that the answers do not depend on the values chosen.
The reasons will be discussed further in the section on how the subsystem answers the
question of correctness of equations. Thus this method of simplifying the solution process
does not limit Andes from anything we would like it to do, although it does preclude it
from giving the student the answer, if it is to be given as an expression in terms of the
parameter.

Checking correctness of student equations

While a tutoring system might, under some conditions, object to a correct equation as
being premature or inappropriate, it must always object if the equation is algebraically
incorrect. In earlier versions of Andes the correctness of student equations was judged
by whether the equation was equivalent to one on a list. The list was generated during
the preparatory process by applying a set of rules for algebraic manipulation to the set
of basic, or “canonical”, equations produced by the knowledge base from the problem
specification[17]. For each derived equation the generator recorded the set of canonical
equations used. If the student’s equation could be found as a simple algebraic manipu-
lation of one of the derived equations on this list, it was considered correct, and which
equations it depended on was given by the corresponding set. This method requires com-
bining the full set of canonical equations in all combinations a student might generate
correctly[17]. Unfortunately, the number of canonical equations involved, even in fairly
simple physics problems, is much larger than a typical human solver would imagine.
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For example, in the problem shown in
Figure 1, Andes2 generates 45 equations
in 41 variables. The number of possible
ways of combining these into a correct
equation is immense. Generating such a
list proved unwieldy on all but very sim-
ple problems.

The new algebra system takes a
different approach. We define an equa-
tion to be correct if it is true given the
problem specification. As the problem
specification implies the solution, the
correctness of the student’s equation is
judged by simply plugging in the numer-
ical solution and evaluating the student’s
equation. That is, the correct values of
the 41 unknowns are substituted into
the student equation and correctness is

20 kg

25o

30 kg

An inclined plane making an angle of 25.0 de-
grees with the horizontal has a pulley at its top.
A 30.0 kg block on the plane is connected to a
freely hanging 20.0 kg block by means of a cord
passing over the pulley.
Compute the distance that the 20.0 kg block
will fall in 2.00 seconds starting from rest. Ne-
glect friction.

Fig. 1
determined by whether the two sides balance. As correctness is indicated by turning the
equation green and incorrect equations are turned red, we call this approach “color-by-
numbers”.

One might ask whether it would be more appropriate to define correct as derivable
from the “canonical” equations, which follow from the problem statement and known
physical principles, by some set of algebraic manipulations. The answer depends on exactly
what we mean by derivable. If, on the one hand, we mean that there exists an algebraically
correct procedure for deriving the student’s equation from the input, then we can give a
formal proof1 that derivability is equivalent, in our context, to evaluating as green in color-
by-numbers. Thus algebraically correct derivability is equivalent to color-by-number.

On the other hand, we might mean something else by derivability. We might mean that
the student’s equation could arise in a derivation starting from the input and proceding
by rationally motivated steps towards finding a solution. If her equation could never arise
in that context, the student should not be writing it down. This definition requires that
we specify some finite set of methods by which such manipulations should proceed. For
example, we could permit solving one equation for one variable in terms of the other
variables and substituting the results into other equations. This, however, can easily lead
to a divergent procedure, so any attempt to generate all satisfactory equations will need
to use a more restrictive method. I will discuss the differences and limitations of these two
methods in the Evaluation section.

Help in finding errors in equations

When a student enters an incorrect equation, the tutor needs to try to identify what is
wrong. As we do not know what equation the student was aiming at, a comparison of
expressions may not be useful. One way to find the source of some errors is to perturb the
entered equation in various ways, and ask the algebra subsystem if the resulting equation

1Proof: In all our problems we can solve the problem by algebraically correct steps, so we can write
the solution for all variables, vi = fi({λj}), where {vi} is the set of all variables in the problem, {λj} is a
(possibly empty) set of underdetermined parameters, and fi are a set of explicitly determined functions.
Suppose the student has written an equation equivalent to S({vi}) = 0, where S is any algebraic expression
in the variables {vi}. If we can show that S is indeed 0 when we substitute fi({λj}) for vi in S, then,
because substituting one expression for another to which it is equal in an algebraic expression is a legitimate
algebraic step, we have derived S({vi}) = 0.
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is correct. For example, signs of terms can be flipped, or sines and cosines interchanged.
Because checking an equation with color-by-numbers is very computationally cheap, a
large number of perturbations can be checked. Nonetheless, many near misses will not be
identified by this process.

Dimensional Analysis

One form of mistake the algebra system can effectively detect is in locating dimensional
inconsistencies. One of the basic techniques physics teachers try to impart to their students
is that they should always check that their equations and values have consistent physical
units[18, 19, 20]. If, trying to recall the formula for the area of a circle, a student remembers
2πr, she should be able to discard that because she realizes areas are measured in square
inches or square meters, while the radius is in inches or meters, so it is impossible for
A = 2πr. We all recall the $125M mission to Mars lost because the required thrust
was calculated in pounds, but the units left off, and only that number of newtons was
applied[21]. So it is very poor pedagogy to have a tutorial system that ignores units. A
system that is able to point to dimensionally inconsistent operations can provide important
feedback on what is wrong with an incorrect student equation. Andes2 informs a student
of dimensional inconsistency as the first step in checking entered equations.

When physicists or engineers use a computer to do their calculations, they have already
verified their equations and chosen appropriate units, so except for oversights like the Mars
disaster, it is generally sufficient to have their programs work with pure numbers. Thus
the major tools for calculation do not integrate units in any essential way. But we want
a system that will recognize that K = mv is the wrong formula for the kinetic energy
(K = 1

2mv2) even in a problem giving the numerical value for v, measured in m/s, as 2.
It can know this because the left hand side of the equation has units kg·m2/s2 while the
right hand side has units kg·m/s.

In Andes1, as in many other systems, the lack of treatment of units meant that
one needed to assume that all units in the problem were consistent. If you look at the
problems in elementary physics books, you will find that the overwhelming majority of the
ones before the modern physics sections do employ only SI standard units, but even there,
there are some values for time specified in minutes. I doubt if even European children have
a good feel for the speed of their favorite car in m/s. And there is one quantity for which
the “standard unit” is quite unfamiliar to freshman — angles. Angles are dimensionless,
as can be seen from the formula for the length s of an arc of angle θ and radius r: s = rθ.
As s and r are both measured in meters, θ is measured by a pure number. But how big
is an angle of 2? It is 2 radians, not 2 degrees. Nonetheless degrees are used extensively
in stating physics problems. Thus Andes1 was inconsistent in its requirement that all
quantities are measured in standard units, and would have run into troubles soon, when
dealing with angular velocities and momentum.

For both these reasons, but most crucially to allow degrees, the algebra system allows
for quantities to be specified in non-standard units. All internal calculations are done in SI
units, but a preferred set of units can be specified for each variable, and numerical values
can be given together with any of a large set (though not at all a complete set) of units.

Derivation and dependence of equations

Because the tutor needs to keep track of what parts of the solution the student already
used, as the student enters a new equation the tutor must try to analyze which canon-
ical equations were used to derive that equation. One way to answer such questions is
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to search for a derivation using a predetermined set of algebraically correct operators2.
This has been used in tutors for calculus[23], for electric circuits[24] and in multicolumn
subtraction[25]. In a complex domain, the search may be prohibitively slow. The earlier
Andes tried to generate all correct equations in advance, so that a submitted equation’s
correctness and derivation could be determined by matching, up to simple equivalences,
with a predetermined list. Unfortunately only simple problems have tractable lists. Our
new system determines which equations could be used to derive a submitted equation by
asking whether it depends on that set of equations.

The dependence-checking facility is first used by Andes in the preparatory procedure
which generates the constraint network and extracts the so-called solution paths, which are
really subsets of the constraint network. This process needs to see if adding an available
equation increases what is known about the solution. If the equation is dependent on
those already used, it is redundant with what is already known, and so provides no new
information. At each stage in generating the constraint network, there is a set of variables
considered not yet known, and a set of equations. If an equation proposed for addition
is independent of the equations already present, it can be considered as solving for one
unknown variable. It may, however, introduce new unknown variables not yet in the
set. The sufficiency of constraint subnetworks is judged by having as many independent
equations as there are unknown variables.

Dependency checking is also used in the tutoring stage. As the tutoring system wants
to be able to help the student make progress on a problem when the student gets stuck,
it provides “what’s next” help. To do this, the system needs to have a model of what
parts of the problem the student already understands. In particular, it needs a way
of determining which parts of the constraint network are known. Because the student
must explicitly define all variables, the variable nodes in the network are straightforward.
The system must distinguish which of the canonical equations she has already used, and
which others she might need to be prompted to find. This prompting should be focused
on the solution path (that is, the minimal constraint subnetwork sufficient to solve the
problem) which includes as much as possible of what the student has already done. The
available evidence for what parts of the constraint network are known is what variables have
been defined, what axis choices have been made to describe vector quantities, and, most
importantly, what equations have been entered. Very often, a correct student equation
will not correspond to any single canonical equation. The algebra subsystem can help in
analyzing correct student equations to see which of the canonical equations are necessary
to derive the student’s equation. When a student enters a correct equation, we assume
that the student knows some subset of the canonical equations from which her equation
can be derived. Andes deduces that subset by examining, for each solution path, on what
minimal subset of the equations in the solution path the student’s equation depends. It
then uses heuristics based on the simplicity of the respective answers to assign credit to
particular canonical equations. The new algebra subsystem provides those subsets by a
different method than that previously used, which was based on the table of “all possible”
derived equations, and it can occasionally produce different results.

One might have the impression that the student, not very sophisticated and entering
equations with as little contemplation as possible, would be entering the basic equations
with little prior calculation. It is surprising, however, how much removed from the canoni-
cal equations even a simple equation is. For example, in the problem described above, one
step in the solution is to write Newton’s second law, (F = ma) for the hanging block. In
terms of the tension T in the rope, the mass m20 of the block, the gravitational accelera-
tion constant g and the magnitude of the downward acceleration a, a student might quite

2This method has the advantage that one can also explore whether a wrong equation can result from
misapplication of physical principles, or mal-rules[22].
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reasonably write
m20g − T = m20a.

This, however, is not one of the basic equations. For one thing, the weight force W has had
its value replaced using another known law, W = m20g. But more importantly, Newton’s
law applies to components of forces, not their magnitudes. In fact, the closest we can come
to the student’s equation in the canonical ones (that is, among the direct application of
individual physical or geometrical principles to the problem at hand) is

Wy + Ty = m20ay

To get to the student’s equation, we also need the canonical equations

ay = a sin θa, Wy = W sin θW , Ty = T sin θT

θa = 270o, θW = 270o, θT = 90o

W = m20g

The first three of these come from the rule for extracting components of a vector, the next
three are specifications of the angles of these vectors. Thus the student has effectively
combined eight canonical equations in her head in writing down a fairly simple equation.

If, after writing down this one equation, or perhaps after also including a few equations
for the block on the ramp, the student is stuck and asks for help, the help system needs to
know that she has correctly employed the eight equations mentioned, and not waste her
time and patience tutoring her on what she already knows. With 45 equations to consider
hinting at, how does the system know that these 8 are not worth looking at? The answer
must be one minimal set of equations on which this equation depends.

How the algebra subsystem answers these questions

How we solve equations

The first task the algebra subsystem is called upon to perform is that of solving a set
of equations during the preparation of a problem for tutoring. Typically there are many
equations in many variables, but they are solvable with fairly elementary techniques either
as explicit numerical values or in terms of a few undetermined parameters. There are,
of course, many very highly developed computer algebra systems with more than enough
mathematical sophistication for freshman physics problems. Our first thought for handling
the problem of finding the solution to the canonical equations was to use Maple[26] to
handle the algebra manipulation. We found, however, that Maple was unable to solve
automatically what appeared to be simple equations with inequalities; for example, it
failed to give an explicit answer on

vx = −vm, v2
x = 10, vm =

√
v2
x, with vm > 0,

a set of equations which occurred in a one-dimensional kinematics problem, where vm is
the magnitude of the velocity known to be moving in the negative x direction. When such
problems arose in more complicated sets of equations, Maple failed to give any solution
at all. The failure of Maple, even with tech support, to handle such problems encouraged
us to look for alternatives. We chose to develop our own algebra system not only because
this would allow us to add whatever methods we found we needed, but primarily because
most of the known systems do not have built in support for physical units3.

3The just-released (June 1, 2001) version, Maple7, has a new package to support units.
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Solving a set of equations in general is not an easy task4, as witness the fact that
even very sophisticated systems can fail on very easy problems. As I was not prepared
to launch a Maple-sized effort, I needed to see if we could restrict our methods and still
handle the full scope of problems we expect to ask freshmen to solve.

Examining the 115 problems in mechanics that were already in Andes at the time we
started, I found that

• The vast majority of the equations were either assignment statements, e.g. m = 4
kg, or could be reduced to assignment statements by substituting in the values of
other variables already given by assignment statements. In fact, 70% of the problems
could be completely solved using only this method.

• Once the variables given by assignment statements are replaced by their numerical
values (with units), there will likely be simultaneous linear equations, which can be
used to further reduce the number of variables. This in fact results in complete
solutions of roughly half of the problems not solved by recursive substitution of
assignment statements alone.

• There is no one method that handles most of what is left. Some involve nonlinear
equations in a single variable, solvable by inverse functions or numerical methods.
There are pairs of equations involving sin θ and cos θ, which can be divided, and
there are pairs of quadratic polynomials in two variables, which can be used together.
By trying various common methods, all the problems in Andes can now be solved
automatically.

It needs to be emphasized that this method which the algebra system uses to solve
the equations is not the way we want students to try to solve the problem. Students
are encouraged to plug in given values only at the end, the exact opposite of what the
computer is doing. The major reason for the algebra system to do otherwise is that the
computer deals with numbers far better than with algebraic expressions. This is not the
way we want our students to work.

There is another issue that might trouble one about relying on an algebra package that
desperately tries to find numerical values for all variables. Does that approach preclude the
use of problems with parameters? As defined earlier, parameters are variables which can
be considered known but do not have an determined numerical value. The most common
parameter in Andes problems is the mass of an object, for example, the masses of billiard
balls. Answers such as angles and velocities turn out not to depend on this parameter,
while the momenta are all proportional to it. If we solve for a particular value of the mass,
we get values for the momenta which are not general, but any generally correct formula
will be consistent with this solution.

Checking correctness of equations

Let us return to the color-by-numbers method of determining if a student’s equation is
correct. Naturally this method requires first finding the solution to the problem. Once our
system has a numerical value for all of the variables that enter a problem, we can easily
check if a student equation is correct by the simple procedure of plugging in the values
and seeing if the equation balances. This method for equation checking also works well
with our method of assigning secret “ugly” values for parameters. A student equation that

4In fact, it is an impossible task. A general fifth order polynomial cannot be solved algebraically, and
while that does not preclude a numerical solution if its coefficients are known, it does preclude one if the
coefficients are other unknown variables. There are methods for dealing with specific classes of equations,
in particular with equations that are linear, even in a large set of variables. But while the majority of our
equations are linear, not all of them are. Nor are they all polynomials.
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does not have the correct dependence on the parameter can be thought of as specifying
the value of the parameter, and the chance that her specified value agrees with the value
we have chosen, to an accuracy better than one part in a billion, is negligible5. As long
as the values chosen are not ones that could be stumbled upon, a student equation that is
correct only for some value of the parameter has a negligible chance of being correct for
ours.

This raises what is the one difficult issue in equation checking by substitution — how
close do the sides need to be to balance? Our evaluations, of course, are not precise, but
use standard double precision arithmetic with an accuracy of about one part in 1015. If
the left hand side of the equation evaluates to 10−7 and the right hand side to zero, does
this balance? Yes for the problem with the momentum of an aircraft carrier (in kg·m/s),
but no, if this problem concerns the mass difference of a grain of salt and an electron,
measured in kg. In our checking of equations we also calculate maximum possible errors,
though our algorithm is not perfect in estimating them.

In order to avoid marking as correct wrong equations that just stumble close to the
right answer, we want to make sure the tolerance we allow for agreement is held as tight
as possible. This is not a serious problem for equations that do not contain numerical
calculation by the students, for the computer calculations made to verify the equation
are accurate enough to permit using very tight standards for agreement. But we cannot
expect the students to do their calculations to 15 figures, or even to specify an answer
to such accuracy. We will allow final numerical answers to have a leeway reasonable for
the quantity in question. We want the student to avoid plugging in numerical values,
except for simplifying values such as 0’s, 1’s and 2’s, until giving the final answer. So for
intermediate equations we can require machine accuracy, while perhaps asking for three
significant figures on final numerical answers.

Incorporating physical units

In Andes, when a student specifies a variable, she describes the physical quantity it rep-
resents. The tutor does not at that point ask in what units the quantity is measured.
However, it does know, from the physics knowledge database, what are the appropriate
units for that variable. When the student writes an equation giving a numerical value
for a quantity, she must include appropriate units. The algebra syatem, in checking that
equation, checks that the units are correct for the physical quantity. In any other equa-
tion, it also checks that the units are consistent. Each expression has a units field which
gives the powers of meters, kilograms, seconds, Coulombs, and degrees Celsius. These
are the appropriate units for the fundamental International System (SI) of units. The
algebraic operations have built in the correct rules for propagating these dimensions, and
imposing the appropriate consistency conditions. In fact, Andes objects to dimensional
inconsistency before any check on the numerical validity of the equation.

As long as all variables are expressed in SI units, ordinary algebra, including powers of
the units, will be consistent. Illegal operations, such as trying to add terms with different
dimensions, are a clear sign something is wrong with an equation. This should be very
helpful in giving reasons that an equation is wrong.

In order to maintain flexibility of expression, Andes permits a problem specification
to ask that certain variables be described in non-standard units. Thus a speed may be
input in miles/hour if desired, but internally all quantities are converted to SI units.

5One might worry about equations which are correct over regions, such as writing x where one should
have had |x|. Parameters which might affect the sign of x would then have a finite chance of equating x
and |x| in a problem for which this is not generally true. But such problems would have bifurcated answers,
depending on the parameter, and they would not be appropriate for an introductory course.
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Modeling which equations the student knows

As we discussed, Andes needs to discover which of the canonical equations the student
appears to know. It does this by asking for minimal sets, within each solution path, of
equations from which the student’s equation might have been derived. The first version
of Andes tried to extract this information from its table of all possible ways of combining
the basic equations, but this method breaks down on all but very simple problems. Our
algebraic system is able to judge independence of equations, however, and therefore it can
provide information — not always unique answers but sets of possibilities — on which
canonical equations were used by the student in creating the entered correct equation.

Determination by dependency

The method Andes2 uses observes that a student’s equation could have been derived from
a set of other equations if it provides no independent restriction on the solution set of those
equations. Equations are restrictions of the possible collection of values of the variables. If
a set of equations so restrict the solution space of the variables that the student’s equation
provides no further restriction, then her equation is a consequence of the others. If that
is not the case, then she could not have legitimately arrived at her equation from the set,
for there are values of the variables for which all the equations in the set are true, but her
equation is false.

Thus if we can determine one unique minimal set of equations with a solution space
contained in the solution space of the student’s equation, we can reasonably conclude
that the student knows those equations. Unfortunately there may be more than one such
minimal set, in which case there are alternate sets of equations the student may have
used. These can often depend on which of several possible paths to solving the problem
the student has embarked upon. The algebra system cannot decide questions like this, but
it can enumerate the possibilities for the help system.

Linear dependence

The method of determining the solution space of an arbitrary set of equations is again
nontrivial, or impossible, as we mentioned for the special case of finding the solution of
the full problem. This problem becomes much simpler if the equations are linear. Then
the equations restrict solutions to hyperplanes, and the condition for dependence of the
student’s equation is that the normal to her hyperplane is a linear combination of the
normals of the hyperplanes of the equations in the set. The components of the normal are
simply given by the coefficients of the variables in the linear equation. Determining if a
vector in N dimensions is a linear combination of a set of P other such vectors is an easy
order (P ·N) or (P 2 ·N) calculation6, not prohibitive.

Generalization to nonlinear equations

So judging independence would be easy if all equations were linear. Unfortunately, even
elementary physics problems involve nonlinear equations, and the method just described
cannot be directly applied. It is still true, generically, that each equation restricts the space
to a surface of one dimension less that the full space, but that surface may be curved. It
is also still true that a possible solution point on the surface is prevented, by the equation,

6Order P 2 · N for the initial setup of the set, and then order P · N for subsequent queries on that set.
The algorithm used is to reduce the vectors to row echelon form while entering them into the set. This
makes the checking of equations against that set more efficient. We expect the help system to make more
queries on fixed sets than changes in the sets.
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from moving off in the direction of the normal to the surface at that point, but as the
surface is curved the normal changes direction from point to point on the surface.

We may still use the method of the linear equations, however, if we focus our attention
on small deviations from the solution point, P0 of the full problem, which the algebra
system has already provided to us. We expect in all our equations, fi({v}) = 0, fi to
be differentiable (probably analytic) at the solution point, so we may expand everything
by Taylor expansion to first order in the variables. The constant term is zero, and the
first order term is specified by the gradient of fi. As each equation becomes linear to
this order of approximation, we can use the method discussed above. The normal to the
equation solution surface is the easily calculated gradient at P0. If the student equation
is independent in the linear approximation then the full equations are also independent7.
Generically, the reverse will be true as well — if the linearized equations are dependent the
full ones will usually be as well, but in this direction there are exceptions, as we discuss
below.

An explicit example of dependency determination

Let us consider a simpler problem to illustrate how the dependence calculations can help
determine what the student has used. Consider this problem:

A car starts from rest and accelerates at a constant rate to 20 m/s in a
distance of 50 m. What is the acceleration of the car?

Some basic equations that deal with the kinematics of linear motion at constant
acceleration are

1: v2
f − v2

i = 2as

2: vf − vi = at

3: s = 1
2at2 + vit

4: s = 1
2 (vi + vf )t

while the givens here are

5: vi = 0
6: vf =20 m/s
7: s = 50 m

The solution point, which solves all these equations, is

P0 : (t, s, a, vi, vf ) = (5 s, 50 m, 4 m/s2, 0, 20 m/s).

The first four equations are not independent, in fact no three of them are independent. Any
two of them imply the other two. So there are many different complete sets of independent
equations for this problem, depending on which two of the first four equations are included:

A = {1, 2, 5, 6, 7}, B = {1, 3, 5, 6, 7}, C = {1, 4, 5, 6, 7}.
D = {2, 3, 5, 6, 7}, E = {2, 4, 5, 6, 7}, F = {3, 4, 5, 6, 7}.

We will also ask about the subsets that don’t include the givens,

Ā = {1, 2}, B̄ = {1, 3}, C̄ = {1, 4}, D̄ = {2, 3}, Ē = {2, 4}, F̄ = {3, 4}.
7Suppose there is a point P1 for which her linearized equation has a discrepancy ∆, but the linearized

canonical equations are all exactly correct. Every point P = λP0 + (1− λ)P1 on the line segment between
P0 and P1 will also satisfy the linearized canonical equations and have a discrepancy λ∆ in the student’s
linearized equation. For points sufficiently close to P0, the exact equations should differ from the linearized
ones by amounts that go to zero faster than the first power of λ, but the linearized dependence is violated
to order λ, so the full equations cannot agree. This contradicts the idea that full student equation would
have no discrepancies on the solution space of the canonical equations. Thus the student equation must
be independent.
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Suppose the student writes down the equation S: s = 1
2vf t. Plugging in the solution values

gives 50 m = 1
2 · 20 m/s · 5 s, which is correct, so the equation is correct. From which sets

could it have been derived, and which most easily?
Rewriting the equations in the form f = left side − right side = 0, and taking the

gradient, we have

function gradient ∂fi/∂x, for x = (t, s, a, vi, vf )
fi t s a vi vf

1: v2
f − v2

i − 2as 0 −2a −2s −2vi 2vf

2: vf − vi − at −a 0 −t −1 1
3: s− 1

2at2 − vit −at− vi 1 −1
2t2 −t 0

4: s− 1
2(vi + vf )t −vi + vf

2
1 0 −1

2t −1
2t

5: vi 0 0 0 1 0
6: vf−20 m/s 0 0 0 0 1
7: s− 50 m 0 1 0 0 0

and student’s equation:
S: s− 1

2vf t −1
2vf 1 0 0 −1

2t

Evaluating at the solution point means plugging in the values of the variables at P0, so,
dropping units here, we have:

fi t s a vi vf

1: v2
f − v2

i − 2as 0 −8 −100 0 40
2: vf − vi − at −4 0 −5 −1 1
3: s− 1

2at2 − vit −20 1 −12.5 −5 0
4: s− 1

2(vi + vf )t −10 1 0 −2.5 −2.5
5: vi 0 0 0 1 0
6: vf−20 m/s 0 0 0 0 1
7: s− 50 m 0 1 0 0 0

and student’s equation:
S: −10 1 0 0 −2.5

First, observe the dependence of the first three equations is manifest by noting that the
first line is 40 times the second minus eight times the third. Similarly the fourth line times
eight, added to the first line, gives 20 times the second. This is the statement that only
two of the four equations are independent. Next, we observe that no linear combination
of these four lines will give the student’s equation; her equation is independent of the sets
Ā...F̄ , so she must have used one of the givens.

We can ask, for each of our complete sets of independent equations, which equations
are necessary to derive the student’s, by finding linear combinations of the gradients as
above. The answers for each set are

A : {1, 2, 5} B : {1, 3, 5} C : {4, 5} D : {2, 3, 5} E : {4, 5} F : {4, 5}
We see that she has definitely used Eq. 5 and that it is considerably more likely that she
used equation 4 than that she used two of the first three equations. She definitely knows
at least one of the fundamental kinematic equations, probably Eq. 4, and she has taken
note of the fact that the car started from rest, the given vi = 0.

A flaw in the method

Thus we have seen how being able to judge the independence of equations can be used to
help determine what the student knows, and we have also seen how we can tell whether
linearized equations are independent. Unfortunately there is a small hole in this argument
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— if the linearized equations are independent, so are the equations themselves, always, as
we saw above. It is also true that generically, independent equations will have independent
linearizations, but not always. For example, consider two equations in two unknowns,
whose intersection determines a solution. In the generic case, the solution
curves of the two equations will in-
tersect, and the linearized forms
of the equations, shown by the
tangent lines, will be independent.
But in the exceptional case that
the two curves are tangent to each
other at the intersection, their lin-
earized form is shown by the sin-
gle tangent line, so the linearized
forms are not independent and do
not determine the point P , even
though the full equations do.

generic case exceptional case
1

2
1

2

P P

t

t
t

t

Two independent equations determining a solution
point P .

As this difficulty only arises in exceptional cases, one might hope that it will not occur
in the problems we see in the introductory course. But in fact it occurs routinely in vector
problems, because the solution often involves an angle of 0 or 90◦, which are critical points
of the cosine and sine functions. In fact, if we look back at the equations above for the
hanging block, and ask for the minimal subset of the eight equations which appear to be
required to derive the student’s equation, the linearized method would not include the three
equations giving the angles. These equations are in fact needed to get ay = −a, Wy = −W ,
and Ty = T from the three equations ay = a sin θa, Wy = W sin θW , Ty = T sin θT . But
they do not appear to be needed in the linear approximation. Expanding ay = a sin θa in
a Taylor series in θa about θa = 3π/2, we have

ay = a(−1 +
1
2
(θa − 3π/2)2 + ...) ∼ −a + 0 · (θa − 3π/2) = −a,

where the ∼ represents the linear approximation. Thus the linear approximation might
mislead us to thinking ay = −a does not require knowledge of θa. The problem is arising
because the solution point happens to be at maximum of the expression ay −a sin θa. The
expression happens to have a zero value and a zero derivative at the same point.

A partial fix

How do we deal with the fact that this situation, which is in some sense exceptional and
should have little probability of ever arising by chance, actually arises often in the problems
we assign students? Examining dependence without approximations is a very complex
issue, and even going to second order in the expansion8 would make the calculations much
larger. The variables in question are generally givens, and the help system may be able
to deal with uncertainty in whether the student has recognized these. So the approach we
have taken is this: When we calculate the gradient of each equation’s function, we also
note which variables the full equation depends on. If a proposed dependence involves only
functions with zero derivatives with respect to a given variable, but nonetheless one or
more depend on that variable, the help system is warned that the equation might depend
on some equation that gives the value of that variable, in addition to the ones it depends
on in linear approximation. If only one of the equations in the linearly dependent set

8While it is probably true that we would never run into the situation where the expression, its first
derivatives, and its second derivatives all vanish at the same point, but the function is still not identically

zero, there are in principle still these exceptional situations. In fact, the function 1−e−1/x2
has a minimum

at x = 0 where it is zero and so are all its derivatives, and yet it depends on x.
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involves the variable, then we can definitely say that for the full equation, this dependency
is incorrect, and we need to include the equation giving the variable’s value. We can also
be sure of dependence if the number of variables involved is not greater than the number
of independent equations in the canonical set.

Evaluation: effect of changing methods

As was mentioned earlier, any student equation which is colored green by color-by-numbers
has a derivation starting from the canonical equations and proceeding by algebraically
correct steps. The derivation, however, might not pass muster of any instructor examining
the result, because it might involve steps that have no motivation in solving the problem.
A tighter definition of derivability would require each step to be a credible step forward
in deriving an answer. The distinction is best understood with an example.

In linear kinematics, there is an equation holding if the acceleration of an object is
constant:

A: v2
f − v2

i = 2 · a · s,
where vf and vi are the final and initial velocities, a the acceleration, and s the distance
travelled. Very often a problem will state that the object starts from rest, i.e.

B: vi = 0

If the student enters the equation

S: v2
f + v2

i = 2 · a · s,

any instructor would conclude that the student had misremembered a sign in the equation
and mark the equation wrong. But equation S can be derived from A and B by squaring
B and doubling the result, giving 2v2

i = 0, and adding that equation to A. Thus S is
derivable by legitimate algebraic steps, but the derivation is misguided because there is
no reason to take these steps if your goal is to solve for one of the unknowns — the only
possible motivation is to justify your mistake. So the old Andes would have marked S
wrong, which is good, while the new one will mark it correct. On the other hand, the
old Andes was simply unable to generate the lists of derived equations for 27 of the 115
problems used by Andes in the fall of 2000.

How often color-by-number approves equations that should be rejected in actual use
has not been systematically studied. While it is clearly a weakness, the consequences
need to be compared to the weakness of methods for generating “properly motivated”
derivations. The possible sets of rules for such derivations need to be sufficiently strong to
include all reasonable correct student equations, while being sufficiently limited to provide
tractable (and certainly finite) sets. Whether this is possible is not clear, but certainly
the rules used by Andes1 failed to produce tractable sets for a fairly large fraction of the
problems physics professors wanted to assign. Color-by-numbers has avoided that problem.
In fall 2001, Andes2 was used by 119 students, who completed 5766 problems (102 distinct
ones). Only one incident was observed of an equation which was pedagogically wrong being
marked correct because the incorrectly included terms evaluated to zero.

The new method of determining dependence also has, as its major advantage, that
it enables problems to be done for which the previous method, of pre-generating all pos-
sible equations, failed. The possible drawback of the new method is in the ambiguity we
discussed when the solution point is also a critical point. The method described above to
handle these exceptional cases appears to correctly give the dependencies in the problems
we have examined so far, although the treatment of “might depend” answers by the help
system could use further work. Currently it ignores “might depends”, thereby possibly
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undercrediting some equations. But this does not appear to have caused any problems in
the use of this method at the USNA in the fall term in 2001.

Summary

A new physics tutorial system has emerged from the Andes effort. It makes very sub-
stantial use of a new powerful algebra subsystem. This subsystem has introduced new
capabilities for dealing with dimensional analysis, for solving systems of equations, and
for providing algebraic help to the students. In addition, it has made two significant
changes compared to other systems. Prior versions of Andes, as well as many other tu-
toring systems involved with algebraic equations, judge the correctness of a submitted
equation and which canonical equations it depends upon by seeking a derivation of the
submitted equation. Because this is a slow process, previous versions of Andes tried to
prederive all correct equations for each problem. The new system is based on the observa-
tion that determining that an algebraically correct derivation exists can be done by simple
evaluation of the equation, without actually finding a derivation. A new method is then
required for determining which canonical equations are needed for a derivation. The new
system does this by examining the linear dependencies of the expansions of all equations
about the solution point. This is not an infallible method, failing if the solution point
is a critical point of equations. However, the most common occurrences of this problem
can be handled by heuristic methods which have been incorporated into the system. The
main advantage of the new method is that it is extremely efficient, compared to a system
which severely limited the kinds of problems that could be handled. These new methods
allow much more complex problems. In the fall 2001 use at the USNA, Andes2 was able
to present many problems which were beyond the abilities of the previous method. It will
be used again, with still more problems, in fall 2002.
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