
 

Our Goal 
 
To automatically provide concept-based feedback to students in 
college level introductory physics courses.   Problems are 
presented as English text with an accompanying diagram.   
Students provide a set of equations as their answer.   The 
following is an exerpt from “Physics for Scientists and 
Engineers”  by  Raymond A. Serway.  

Concept-based Decomposition 
 
The student is expected to recognize the properties of the objects (e.g., the mass of block one) 
and the relationships among these properties.  For this example based on Atwood’s machine  a 
student would need to employ Newton’s second law on each block, knowledge that the string’s 
length is constant, and how forces are transmitted around an ideal pulley.   
 
A complete concept-based decomposition would result in the set of equations shown below.  
These could be developed automatically from a problem definition and first principles or 
provided manually for a problem. 

 

Student Solutions 
 
Solutions provided by students, even correct solutions, tend to look very 
different than the complete concept-based  decomposition shown to the left.  
Two typical  solutions to this example are shown.  Solution B is the most 
common  
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Student Solution A 

 T1   m1g = m1a1 
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Student Solution B 

  T   m1g =    m1a 

   T   m2g =    m2a 
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Example Problem 
 
When two unequal masses are hung 
vertically over a light, frictionless pulley as 
shown to the right, the arrangement is 
called Atwood’s machine.  Determine the 
acceleration of the two masses and the 
tension in the string.      

         

         

         

                  



Standard Naming Conventions 
 
Our naming convention is derived from introductory physics texts, such as “Physics for 
Scientists and Engineers”  by  Raymond A. Serway,  and augmented  by the matching 
hierarchy shown below. A student’s variable may be matched by several entries in our table 
and each match may provide multiple candidates for the variable’s dimensions.  
 
1 -  Prefix match:  an entry in the table matches a prefix of  the student variable.  For   
      example, student variables tx, tstop, and t1 would all be matched by a table entry of t. 
 
2 -  Preemptive prefix match: same as a prefix match except that all shorter prefix matches  
      are discarded.  For example, student variables thetax and thetay would be matched by a  
      table entry of theta which would prevent the table entry of t from matching . 
 
3 -  Exact Match:  This case requires the student’s variable to be an exact match to the table  
      entry.  This is a rare match and used from variables such as G, the Universal  
      Gravitational constant. 

Naming Conventions 
T1 - m1g = m1a1 

 
From variable naming conventions we get the following matches for each variable.  
The matches employed are not case sensitive and cover all of introductory physics and 
not just Newtonian Mechanics.   When considered independently T1 could be any one 
of five different dimensions, m1 could be any one of three, g could be anyone of three, 
and a1 could be any one of two.    Standard naming conventions yield 90 possible 
combinations consistent with the variables used.  
 
T1 :    time [s], tension [kg·m/s2], kinetic energy [kg·m2/s2], temperature [K],  
         thickness [m]  
 
m1 :   mass [kg], angular magnification [dimensionless],   integer [dimensionless],  
         magnification [dimensionless],  magnetization [C/m·s] 
 
g:      acceleration [m/s2],  density of states [s2/kg·m2], Newton’s G [m3/kg·s2] 
 
a1:     acceleration [m/s2],  distance [m],  amplitude [several] 

Equations-based Constraints 
T1 - m1g = m1a1 

 

 
The equation’s parse tree can be annotated with constraints that encode dimensional 
analysis.  For example, only terms with the same dimensions can be added, subtracted or 
equated.  When factors are multiplied dimensions are added. 
 
By applying these constraints to the example equation the ninety possible combinations 
are reduced to the single possibility highlighted in red.  In this case , T1 is a tension, m1 is a 
mass, and g and a1 are accelerations. 
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Handling Incomplete and Incorrect 
Information 

 
Constraint propagation handles complete and correct information by finding all 
possible consistent assignment of dimensions.  Experience has shown that there 
is an unambiguous interpretation 90% of the time. 
 
However, when information is incomplete or incorrect the challenge is not only 
to recognize that there is a problem but to localize the problem so that effective 
feedback can be provided to the student.  To do this we added heuristic control 
structures to constraint propagation that enable the method to localize an 
inconsistency within the smallest containing subexpression.    
 
One of the important key observations was that students often use the same 
variable to represent different properties.  For example, a1 might represent an 
acceleration in one equation but a distance in another equation. To handle these 
cases and provide a basis for effective feedback our approach treats each 
instance of a variable independently and iteratively adds identity constraints 
until all constraints have been applied.  The process proceeds in four successive 
stages.  Each successive stage builds on the results of the previous stage. 
 
1 -  dimension from leaf nodes are propagated up the equation parse tree 
2 -  within equations information is propagated down the tree  
3 -  identity of variables within equations is asserted and validated 
4 -  identity of variables across equations is asserted and validated 

Focus on the Variables  
 

What information is needed for an 
automated tutor to understand the student’s 
use of variables and equations? Must the 
student explicitly map each variable to its 
corresponding physics concept?  Must each 
equation be an instantiation of a single 
physics concept?  

 
We’ve focused on the semantics of 
variables and developed techniques that can 
infer a variable’s dimension from its use in 
the set of equations provided as a solution.  
This is a critically important first step to 
inferring the full semantics of the variable 
and equations used by the student to solve 
the problem. 

Inferring Dimensions of Variables 
 
To remove the need for explicit specification of variables we rely on basic 
physics naming conventions used in conjunction with an analysis of the 
variables as they are used in the equations.  The process is performed in 3 
steps.  
 
1 -  Use standard physics naming conventions to determine possible  
      names for each variable 
 
2 -  Develop constraints on each variable’s dimension from the equations  
  
3 -  Apply constraints using locality-based heuristics 
 
This process may find one possible assignments of dimensions to 
variables,  no consistent assignments, or  multiple consistent assignments.    
Only when the result is inconsistent or ambiguous would the student be 
required to provide definitions for the variables.  

Using  scaffolding  
 
It is important for a student to know the 
meaning of each variable used in their 
solution.  Requiring complete explicit 
definitions is often a pedagogically 
useful requirement for a beginning 
student.  However, with time and 
experience the student adopts standard 
conventions that can be used to reduce 
the need for explicit definitions of all 
variables.   
 
As a student matures in her use of 
variables and equations, forcing her to 
completely and explicitly define each 
variable proves to be a frustrating and 
can cause her to lose interest and 
motivation.   

An example  
T1 - m1g = m1a1 

 
The following example highlights how the dimensions of variables are inferred.  
We use a single equation from Student Solution B shown above. 
 

The example is worked through three separate steps  
 
1 -  apply a standard naming convention  
 
2 -  constraints on each variable’s dimension are derived from the equations  
  
3 -  constraints are applied using locality-based heuristic 

Experimental Results 
 
An Andes corpus containing 6000 logs and 9865 sets of equations was analyzed.  The 
dimensions of 90% of variables used by students to solve introductory physics 
problems can be inferred from their equations using localized constraint propagation.   
 
This success rate has been confirmed on both complete and incomplete solutions as 
well as correct and incorrect solutions.  Naming conventions were based on all of 
Newtonian Mechanics and not stylized for the corpus being investigated.   

 Ambiguous     Ambiguous       Percent  
  Variables        Constants      of Corpus 
 
        0                       0                    83  % 
        0                    > 0                      6  % 
        1                    > 0                      3  % 
     > 1                    > 0                      6  % 
   Inconsistent Dimensions             2  % 


