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This paper describes work on methods that evaluate algebraic solutions to word
problems in physics. Many current tutoring systems rely on substantial scaffolding and
consequently require students to completely describe every variable used in the solution.
A heuristic, based on constraint propagation, capable of inferring the description of
variables (i.e., the possible dimensions and physics concepts) is shown to be highly
reliable on three real world data sets, one covering a few problems with a small number
of student answers and two others covering a large class of problems (∼100) with a large
number of student answers (∼11,000). The heuristic uniquely determines the dimensions
of all the variables in 91–92% of the equation sets. By asking the student for dimension
information about one variable, an additional 3% of the sets can be determined. An ITS
tutoring system can use this heuristic to reason about a student’s answers even when
the scaffolding and context are removed.
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1. Introduction

In teaching problem solving, Intelligent Tutoring Systems (ITS) often employ a
rigid and explicit framework to guide the student along a predetermined sequence
of steps. This mechanism, called scaffolding16,2,9, is pedagogically sound and bene-
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ficial to beginning students in the subject, because it helps them learn how to sys-
tematically analyze a complex problem. After some experience, students internalize
these steps, and the best pedagogy changes from requiring explicit demonstration
of each and every step to allowing the most basic of these steps to be performed
implicitly. In fact to continue to require explicit demonstration of these basic steps
often frustrates the students, making the task more tedious than instructional. At
some point, the scaffolding should be relaxed by the tutoring system.

Removing the scaffolding puts a greater burden on both the student and the
tutoring system. The student must do more on his own without feedback from the
tutor and the system must now interpret answers that may be in a different sequence
or may have incorporated some basic assumptions. This is especially true when there
are many ways to specify the solution, as when there are multiple equation sets that
correctly describe the physics of the problem, represented in many equivalent forms
with differing numbers of equations and variables. In addition, students can use any
one of many different variable names to refer to a single physical property. Tutoring
systems must be able to infer properties that are referred to by the variables in a
set of equations before they can evaluate the correctness of the equations.

This paper describes our continuing work on developing approaches that reduce
an ITS’s reliance on scaffolding. In particular, we examine issues of identifying the
meaning of variables in equation sets that solve college level introductory physics
problems. Our initial techniques worked for a small set of problems and on a small
number of students. Subsequent analyzes of a larger corpus showed that improve-
ments were needed and the matching techniques were extended as described in
section 4.1.1. The improved technique uniquely determine the dimensions of all the
variables in 91–92% of the sets of equations. By asking for dimension information
about one variable, an additional 3% of the sets could be determined. Earlier de-
scriptions of this work can be found in 6,7,10,11,8,9. Some of the results have been
reported in 6,11,9.

These analyses show that a physics tutoring system can relax scaffolding and
still reliably and robustly determine the dimensions of the variables used in the
equations. This knowledge can in turn be used to identify the physical quantities
corresponding to student-chosen variables used in their equations, and to associate
them with a canonical solution set of variables and equations. We plan to build
on these results to identify the physical concepts employed by students to solve
a problem and to provide effective feedback when irrelevant concepts are used, or
relevant concepts are omitted or used incorrectly.

2. Algebraic Physics Problems

Physics uses sets of algebraic equations to specify the interrelations of a set of
physical quantities. One of the main differences between generic algebraic equations
and algebraic equations describing a relationship in physics is that the latter must
be dimensionally consistent. Two algebraic equations in physics are shown below.
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T −m1 ∗ g = m1 ∗ a1 (1)

a1 = −a2 (2)

Algebraically speaking, these equations could be added to one another to form
a new equation. Physically speaking, equations describe the constraints between
quantities given by the laws of physics while variables represent physical properties
of an object or a system of objects. Consequently each of the variables, constants,
terms, expressions, and even equations has specific dimensions and can only be
combined using dimensionally consistent operations. For example, equation 1 is
likely to have the dimensions of force (i.e., kg ·m/s2) while equation 2 would have
dimensions of acceleration (i.e., m/s2). It would be incorrect to add these equations,
since that operation would violate dimensional consistency.

As a first step in deciding if an algebraic equation in physics is correct, a system
can check if the equation is dimensionally consistent. This is analogous to verifying
that the syntax of a program is correct by verifying that the type of each variable
is consistent with the operations on that variable. This is a straightforward check
if the meanings of the variables are known; if not, it provides constraints on what
they can signify.

2.1. Issues in Removing the Scaffolding

Removing the scaffolding imposes an additional computational requirement on tu-
toring systems. We illustrate this with an example problem based on Atwood’s
machine, a pulley with two masses, m1 and m2 hanging at either end, as shown in
Figure 1.

m
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1

Fig. 1. Atwoods Machine

A common problem based on Atwood’s machine asks the student for the equa-
tion(s) that would determine the acceleration of the mass m1, assuming that m1
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Fig. 2. Different variable sets describing the solution.

and m2 are not equal. Equations 3 through 6 represent one solution to the problem
using variable set (i) in Figure 2.

Forces/Acceleration on Block1 : T1 −m1 ∗ g = m1 ∗ a1 (3)

Forces/Acceleration on Block2 : T2 −m2 ∗ g = m2 ∗ a2 (4)

Tension in rope : T1 = T2 (5)

Acceleration of connected blocks : a1 = −a2 (6)

From a pedagogical standpoint, physics instructors teach beginning students
that the steps involved in solving problems of this type are:

(1) variable definition: Each variable is defined with the object(s) and properties
to which it refers. In some cases, the time when this variable is applicable is
also defined.

(2) identification of physics laws: Each applicable physics law, e.g., force balance
or conservation of momentum, must be identified and the objects to which they
apply must be specified.

(3) instantiation of physics laws: The general physics laws are stated as equations
with “textbook” variables. Each variable specified from the first step is substi-
tuted as appropriate for the textbook variables. The result is an equation or
system of equations sufficient to solve for all unknowns in the current problem.

(4) solving the equation set: The algebraic manipulations are performed to solve
for the required variables. Our tutor does not address this step.

As students become accustomed to the vocabulary of the domain, they start
using problem solving “shortcuts”. Instead of defining each variable explicitly, the
students select from a dictionary of well-known physics variables to represent the
properties that they desire. For example in Newtonian mechanics, variables begin-
ning with m typically represent masses, variables beginning with a typically rep-
resent accelerations, and variables beginning with T may represent tensions (i.e.,
forces). Thus the naming of a variable implicitly specifies possible dimensions or
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properties and the subscripts of each variable specifies the object(s) to which the
variable refers. For example, m1 and a1 would refer to the mass and acceleration
of the same object while p1,t1 might refer to the momentum of object 1 at time t1.

When the scaffolding is removed, the tutoring system must be able to deter-
mine the context of the system of equations. For example, rather than describe the
Atwoods problem using equations 3 through 6, the student might choose to use a
single variable a to represent acceleration, and a single T for the tension, implicitly
using the principle that equates T1 and T2, and the constraint a1 = −a2, which
comes from the fixed length of the cord. Variable set (ii) in figure 2 identifies the
variables used with such an approach. The resulting equations are shown below.

T −m1 ∗ g = m1 ∗ a (7)

T −m2 ∗ g = −m2 ∗ a (8)

The tutor must determine that (1) the variable a has the dimensions of accelera-
tion (kg ·m/s2), (2) the single variable is mapped to the acceleration of object 1 and
that (3) the acceleration of the other object is replaced by an algebraic substitution
using Eq. 6. The system must make similar determinations for the tensions.

The two issues that a tutoring system must address when scaffolding is removed
are (1) identification of the dimensions and therefore the properties of each variable
and (2) identification of the object(s) that the variables refer to. In this paper, we
focus on the first issue, that of determining the dimensions of each variable. Our
preliminary work in addressing the second issue, that of mapping the variables to
objects is described in Ref. 11.

3. Prior Work

Checking for dimensional consistency is an important first step for a physics tutoring
system as it can then focus on reasoning about dimensionally correct equations
only. Existing systems, e.g., ANDES3,14,4 and PHYSICS-TUTOR6, require that
the dimensions of each variable and constant be known a priori either through a
knowledge base of variables and constants or by having the student define them.
Once these dimensions are known, it is a fairly simple step to determine if the
equation is dimensionally consistent by using standard dimensional analysis.

There are many systems that use constraint propagation to ensure consistency of
values of variables. Examples of such systems include VEXED15 and OPIS13. Their
use of constraint propagation is similar to our use except that they are propagating
values and not dimensions.

There has also been some work done on adding dimension specifications to
programming languages to support compile-time12,5 and run-time1 detection of di-
mension errors. These systems are similar to strongly typed programming languages
where every variable has to be defined and has a type. Our system is analogous to
a weakly typed language where variables are partially defined on first use and their
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types are inferred from the context.

4. Dimension Check Algorithm

In an earlier paper10, we described an approach for determining the dimensions
of every variable in an algebraic equation. The earlier version of the technique
combined the use of a knowledge base of commonly used physics variables and
constants with constraint propagation.

A constraint graph is built in which variables in the equation are instantiated as
leaf nodes, and operators (e.g., +,−, ∗, /, =) and functions (e.g., cos, sin, tan) are
instantiated as internal nodes. The value at each node represents the set of possible
dimensions for that node. The algorithm uses a knowledge base of commonly used
physics variables and constants with constraint propagation. The knowledge base
determines the possible dimensions of each variable. There are usually multiple pos-
sible dimensions for a variable. For example, p can properly be used to represent
a momentum [kg · m/s], an object distance [m] in optics, a pressure [kg/m/s2], or
an electric dipole moment [C · m]. It might also be a variable which should have
been called P , representing a power [kg · m2/s3], a probability [dimensionless], or
a probability per unit distance or volume [m−1 or m−3]. Constraint propagation is
used to propagate dimension information to other terms and literals to (1) infer di-
mension information and (2) determine dimensional consistency. The algorithm can
take partial information about the dimensions of a variable and combine that with
knowledge of operators and functions (which are just operators) to completely de-
termine dimensions. In essence knowledge, even incomplete knowledge, propagates
from one part of the equation to another. This permits the algorithm to reason
about dimensional consistency when the variables are not explicitly defined.

This section describes how the algorithm checks for dimensional consistency in
equations. The checks are performed in a series of steps as described below:

(1) set up the constraint tree for each equation.
(2) using established naming conventions determine the possible dimensions of the

variables and thus the dimensions of the leaf nodes in the constraint tree.
(3) propagate values in the constraint tree and determine the consistency of each

tree.
(4) enforce consistency constraints on the dimensions of all leaf nodes corresponding

to a single variable, and propagate the constraints throughout the resulting
overall graph.

(5) generate feedback to the user.

4.1. Setting Up The Graph of Constraints

The system establishes the constraint graph by setting up a binary constraint tree
for each equation and represents the dimensional possibilities for each node. Each
interior node in the graph represents an operator (e.g., =, +,−, ∗, /) or a function
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(e.g., sin, cos). The leaves of the tree represent each instance of a variable or a
constant in the equation. If a variable occurs twice in one equation or in two separate
equations, there will be two separate nodes in the constraint network labeled with
that variable. This allows our system to work with multiple instantiations of a
variable, and if the equation set is found to be inconsistent, to pinpoint the specific
instance that is at fault. To maintain consistency for each variable within the system
of equations, an identity constraint is added. These constraints connect all nodes
that are instances of the same variable, even if they occur in different equations,
restricting these nodes to have the same set of dimensions.

The edges of the constraint graph connect nodes that affect each other di-
rectly. The value at each node represents the set of dimensional values that are
consistent with the values of the nodes connected to it. Each member of the set
is a five tuple specifying the exponents of each dimension. The tuple is ordered
as < distance, mass, time, charge, temperature >. For example, a dimensionless
variable has a value < 0, 0, 0, 0, 0 >, a variable m for mass will have a value of
< 0, 1, 0, 0, 0 >, and a variable a for acceleration (i.e., m/s2) will have a value of
< 1, 0,−2, 0, 0 >.

4.1.1. Initializing Values

Once the constraint trees have been constructed, the system attempts to obtain
initial dimension values for the leaf nodes, i.e. the variables and constants. The
algorithm uses a knowledge base of commonly used variables and constants along
with their dimensions. It may be that there is either no mapping available or that
there is more than one mapping. In these cases, the system will either leave the
specific dimension blank or set the node to reflect that more than one dimension
is possible. Figure 3(a) shows an example of a constraint tree after the leaf nodes
have been initialized with possible values. The information in the knowledge base
shows that T typically represents tension with dimensions [kg ·m/s2], or time with
dimension [s], or kinetic energy with dimension [kg · m2/s2], or temperature with
dimension [◦K], and therefore assigns a set of these four dimension possibilities to
the variable T1.

The knowledge base supports three types of matches on variable names. Each
entry into the knowledge base consists of (1) a string, (2) a set of dimensions, (3)
a category, and (4) a type of match. The three types of matches are:

• prefix match: Any variable name whose prefix matches the string of an entry in
the prefix knowledge base will have the associated set of dimensions as a possi-
bility. For example, the variable alp will prefix match with the entry a and will
have dimensions associated with acceleration as one of the valid possibilities.

• pre-emptive match: Any variable name whose prefix matches the string of an
entry in the pre-emptive knowledge base will pre-empt any prefix matches.
For example, the variable alpha1 will pre-emptively match with alpha and
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Fig. 3. Constraints Propagating through the Tree

have radians as one of the possible dimensions. This match will also remove
acceleration (and any other prefix matches) from the list of possibilities.

• exact match: Any variable name that matches exactly with the string of an entry
in the exact-match knowledge base will have the associated set of dimensions.
This match overrides and excludes all other matches. For example, the variable
G will have the dimensions of the universal gravitational constant and the
match will remove all prefix or pre-emptive matches with G. The variable G1
however will not be an exact match.

The extended matching capability provided us with ways to specify preferences
amongst the different possible matches for a variable and proved reliable and robust.
Students could employ non-standard variables and make discovery of dimensions
difficult or impossible; however, our experience has shown that this is seldom the
case and that students almost always follow the conventions established in the field
and used in texts and by instructors.
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4.2. Propagating Constraints

Once the initial dimension possibilities for the leaf nodes have been established,
dimension information is propagated to determine if each equation is dimensionally
correct. The system uses a few simple rules to propagate and infer dimensions. The
rules for reasoning about dimensions are listed below:

(1) If a node represents an additive operator (+,−, =), then the dimension of this
node and its children must be the same.

(2) If a node represents a trigonometric function (sin, cos), then the node and its
child are dimensionless.

(3) If a node represents a multiplication operator (∗), then the dimension of this
node is the component-by-component sum of the dimensions of its children.
Figure 3(b) shows the effect of propagating dimensions at leaf nodes to the two
interior nodes representing multiplication (i.e., labeled with a *).

(4) If a node represents a division operator (/), then the dimension of this node
is the result of subtracting the dimension (component by component) of the
right child (i.e., the denominator) from the dimension of the left child (i.e., the
numerator).

(5) The dimension possibilities of each node are repeatedly checked to assure that
all possible dimensions are consistent with the possible dimensions of their
parents and children. If one of the possible dimensions is not consistent it
is removed. This process is repeated until a fixed point is found or until an
inconsistency has been revealed.

(6) Nodes with unknown dimensions acquire them as necessary to maintain dimen-
sional consistency.

Figure 3(c) shows the first step of propagating constraints to the nodes labeled
− and =. The constraints associated with these nodes require that the node and
its children have the same dimension and therefore tightly constrain the overall
tree. Figure 3(d) shows the final state after all constraints have been propagated
to a fixed point. When fully resolved there is a single assignment of dimensions to
variables consistent with the equation, and T1 is identified as a tension [kg ·m/s2].

Once all constraints due to mathematical operators have been satisfied, the
system proceeds to impose identity constraints. If an inconsistency is found while
processing mathematical operators, this can be brought to the student’s attention.
Identity constraints are introduced only after the other constraints have been sat-
isfied. Delaying the application of identity constraints guarantees that local sources
of inconsistency will be identified early in the evaluation. Consistency constraints
are iteratively applied until the entire graph is stable or an inconsistency found.

5. Evaluation

The algorithm was evaluated on three data sets. Each data set has slightly different
characteristics and can be described as follows:
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• The Lafayette Data Set:
The data set consists of approximately 350 answers to four physics prob-

lems from 88 different students in an introductory physics course for engineers
and science majors at Lafayette college. The problems varied in difficulty from
the example discussed in this paper (Section 2.1) to a problem involving an
accelerating pulley. There were no restrictions on the types of variables that
the students could use although they were discouraged from performing alge-
braic simplification of their equations. The students were given the questions
and asked to write their answers on sheets of paper that were later transcribed
into an electronic form. In addition, the students were not required to define
or explain any of the variables that they chose to use.

• The ANDES 2000 Data Set:
The ANDES system is also a tutoring system for introductory college level

physics. It has a large database of problem types and is in current use at the
United States Naval Academy. Logs of student answers and tutor responses
have been maintained since the initial introduction of the ANDES system. We
extracted the student answers from one semester (Fall 2000) and used it to
evaluate our system. The key features of this data set (and of the ANDES
system) are:

– large database of problems and problem types: The ANDES system has a
repository of approximately one hundred problems. These problems are
much more diverse than the ones used to generate the Lafayette dataset.

– large number of equation sets: The analyzed ANDES data contained 9,865
equation sets in 6,000 logs. These logs were created by many students, each
of whom worked on many problems. Our analysis does not group equations
sets by either student or problem but rather treats all 9,865 equations sets
as a single corpus. The system recorded answers, including partial answers,
making the number of equation sets larger than the number of logs. Many
of these equation sets contain incomplete answers, i.e., the student did
not enter all the equations needed to solve the problem. We accepted any
student equation that was correct, that is, consistent with the problem
as stated, and otherwise JaSL8 imposed no constraints on the equations
accepted.

– variables are explicitly defined before use. The ANDES framework requires
that the students define all variables before they can be used in equations
and provides a graphical interface to help them with this step. Our analysis
does not use this information, but the fact that the student was required
to give it may have affected the inputs.

– use of numeric values: The questions in ANDES are given in terms of
explicit numerical quantities and require numeric answers. While students
were strongly encouraged to generate complete algebraic solutions before
substituting numeric values to arrive at the answer, students frequently
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use numeric values in place of variables at earlier stages. In this data set,
units were not required, so all numbers were treated as having unknown
dimensions.

• The ANDES 2001 Data Set
ANDES 2001 was an enhanced version of ANDES that allowed the specifi-

cation of dimensions for constants. The ANDES 2001 data set is very similar
to the ANDES 2000 data set, but it contains dimension information on student
supplied constants.

The different properties of the three data sets allowed us to evaluate the perfor-
mance with (1) unconstrained user input (Lafayette), (2) a large class of problems
(Andes 2000, Andes 2001) and (3) hints from the student (Andes 2001).

5.1. Experimental Results

We used the data from the experiments to evaluate the technique along several
directions.

• Correctness: Since our technique is based on a heuristic match using a knowl-
edge base, one important question is “How often does the technique return an
incorrect answer?”

• Effectiveness: Our initial goal was to remove the need for students to explicitly
identify every variable that they used. The effectiveness is determined by the
number of equation sets where the technique could uniquely determine the di-
mensions of all variables. We also measured in how many cases one clarification
from the student would have sufficed.

• Generality: Our earlier work was evaluated on a small number of problems. The
later set of experiments uses a much larger set of problems and hence tests a
much wider set of variable types. The experiments should also determine what
types of problems are problematic for the technique.

• Robustness: How well will the technique perform on incomplete sets of equa-
tions? The data from both the Lafayette and ANDES experiments includes
incomplete equations submitted by the students. If the technique does not
work well on incomplete sets of equations, then the system would not be able
to provide feedback to a student who needed help to generate the remaining
equations.

5.1.1. Results from the Lafayette Data Set

Dimensional inconsistencies occurred in approximately 15% of the students’ answers
and the errors were all detected by our algorithm. Our original algorithm failed to
disambiguate only 5% of the submitted answers (two to three answers for each
problem) A tutor would need to ask the student a question about the meaning of a
variable to disambiguate. The evaluation of this dataset showed that the technique
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was correct, effective and robust for this small sample of answers. It was robust
in that the students were not constrained in the type of answers they could write
down.a

5.1.2. Results from the ANDES 2000 Data Set

An initial evaluation showed problems that were not revealed with the smaller
Lafayette data set. Many equation sets had more than one set of possible dimen-
sion assignments for the set of variables. We observed that because we were using
possible concepts from all of physics, including electricity and magnetism and mod-
ern physics (which were not covered in the Andes problems) the range of choices of
dimensionality were often very large and the constraints were often insufficient to
uniquely determine the correct choice.

This problem was addressed by (1) splitting the knowledge base into broad
subfields of relevance and (2) adding a more powerful three-level matching capabil-
ity, as described in section 4.1.1, to the knowledge base. The knowledge base was
partitioned into major subfields, such as Newtonian mechanics, electricity and mag-
netism, and modern physics, and the ANDES problems were annotated to specify
that they were problems in Newtonian mechanics. The results are shown in Table
1b. We found that in 80.5% of the equation sets the dimensionality of all variables
were uniquely determined. In 3.2% of the cases we found that exactly one variable
was ambiguous, so that with at most one clarifying question to the student we could
uniquely determine the dimension of all variables in 83.8% of the cases.

Of the remaining 16.2% of the cases, 13.9% had more than one ambiguous vari-
able and 2.4% were found to be dimensionally inconsistent. The variable-matching
knowledge base that we used had 109 entries and contained information covering
all of Newtonian mechanics, the area from which the analyzed corpus was obtained.

Table 1. Evaluation of the ANDES 2000 data.

Equation Set Property Number Percent
in Corpus of Corpus

No ambiguous variables 8022 80.5%

One ambiguous variable 320 3.2%

Two or more ambiguous variables 1381 13.9%

Inconsistent Dimensions 237 2.4%

As described earlier, the ANDES system permits the students to use numeric

aStudents were free to use any naming convention for variables and not asked to define them. If a
definition was given it was ignored in our analysis. Standard naming conventions were employed
on all student submissions even though this was not required.
bThese results differ from those reported in Ref. 9, because in the interim we discovered several
acceptable variable assignments, such as A for area and V for volume, which had been inadvertently
left out of our knowledge base. Because Andes is not case sensitive, these possibilities, though little
or never used by the Andes students, introduce additional ambiguities when students used v and
a for velocity and acceleration.
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values in place of variables. In 2000, Andes did not check that correct dimensional
information was included. Thus a student might enter 9.8 instead of g for the accel-
eration of gravity. Consequently, constants can sometimes have unstated dimensions
and the system has to treat each constant initially as having all dimension possi-
bilities instead of as dimensionless constants. This proved to be a source of much
of the ambiguity.

Thus we see that our technique was correct, reasonably effective, general and
robust on a large set of problems over a large group of students. But we expected
that we could do better if we could make use of dimensional information provided
by the students, such as in an equation like g = 9.8 m/s2. We tested our method
on equation sets which contained only correct equations, as we were not prepared
to examine by hand whether a failure to find the dimensionality of the variables
was due to our in inadequacy or to student mistakes. Andes in 2000 did not check
units, but Andes in the fall of 2001 did. Thus we turned to the 2001 Andes corpus.

5.1.3. Evaluation of Fall 2001 Data Set

The experimental results from the ANDES 2001 data set were very informative.
The main difference between this data set and the one from fall 2000 was Andes’
additional capability of analyzing dimension specifications. Students were asked
to specify the dimensions of constants in their equations. For this analysis, we
used the students’ dimensions whenever provided. The summary results (Table 2)
shows that using the dimensions provided by the student did improve the success at
unambiguous determinations from 80.5% to 92.0%, and over 95% could be resolved
with at most one question.

Table 2. Evaluation of the ANDES 2001 data.

Equation Set Property Number Percent
in Corpus of Corpus

No ambiguous variables 9737 92.0%

One Ambiguous variable 319 3.0%

Two or more Ambiguous variables 325 3.1%

Inconsistent Dimensions 200 1.7%

To check that this improvement over 2000 was due to student-supplied dimen-
sions, we ran our method on the 2001 logs in the 2000 mode, ignoring user-supplied
dimensions and ignoring all variables which occur only in statements giving their
numerical value, such as L = 2.3 m. (If we ignore user-supplied units, we can ex-
tract no information about L from such a statement, so if L appears nowhere else
in the equations, it is irrelevant and indeterminate.)

We evaluated the performance of our methods based on whether (1) user spec-
ified dimensions were used or ignored and (2) the system used a knowledge base
that mapped variables to all physics quantities or only to concepts from Newtonian
mechanics. The results are shown in Table 3.
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Table 3. Breakdown of results from the ANDES 2001 data.

KB User Dimensions No amb var 1 amb var ≥ 2 amb var Inconsistent

full no 6998 (70.9%) 189 ( 1.9%) 2629 (26.6%) 52 (0.5%)

newton no 7958 (80.7%) 213 ( 2.2%) 1612 (16.2%) 83 (0.8%)

full yes 9663 (91.3%) 339 ( 3.2%) 426 ( 4.0%) 152 (1.4%)

newton yes 9737 (92.0%) 319 ( 3.0%) 325 ( 3.1%) 200 (1.9%)

Without user specified dimensions, the technique performed nearly identically
on the 2001 data set and on the 2000 set. Not surprisingly, we see that when
students are required to include dimensions or when the class of problems are re-
stricted to a specific domain of physics (i.e., Newtonian mechanics) our methods
give unique dimensional identifications more often. Further we see that user sup-
plied dimensions are much more effective at disambiguating than is restricting the
knowledge base to one domain of physics. From the third column in table 3, giving
the fractions which our methods unambiguously resolve, we see that only 70.9%
of the corpus is unambiguous when the knowledge base for all of physics is used
and no dimension information is provided by the student. When the knowledge
base is restricted to only consider Newtonian Mechanics, and user dimensions are
accepted, this increases by 21.1% to 92.0%. Almost all this increase (i.e., 20.4%
out of a total of 21.1%) can be obtained using only user supplied dimensions. This
indicates that the dimensionality of variables can be inferred without knowing the
domain of physics to which the problem belongs, and that user supplied dimensions
are a key component of an ITS working with algebraic physics equations.

It is also instructive to examine the 200 equation sets (2% of the corpus) which
Andes accepted as correct but which our heuristic methods declared inconsistent.
We examined these by hand and found they can be partitioned into four groups.

58 inconsistencies were caused by equations that Andes accepted though in-
structors would have marked as wrong. Two such examples are v = 0 m/s2 and
4.5 J = 0.5 kg ∗ 3 m/s2. Our system rejects the first equation since v cannot repre-
sent a concept with dimensions m/s2 (acceleration). Andes ignores any dimension
information when the numeric value is zero, therefore ignores the dimension infor-
mation following the 0, and accepts this equation. Our system rejects the second
equation since energy(i.e., J) does not have the dimensions of kg · m/s2. Andes
interprets the input as (0.5 kg)× (3 m/s)2 (notice the the location of the additional
parentheses) and accepts this equation as well.

60 inconsistencies were caused by equation sets with ambiguous inputs for which
our parser found a correct, but unintended, parse. Our parser is a standard deter-
ministic parser and when an input is ambiguous (i.e., has more than one parse)
it only considers one of the possible parses. Andes found a different, dimension-
ally consistent, parse than our system. Had our parser found the parse Andes used
the equations sets would have been determined as consistent. This indicates an
inadequacy in our parser, but not in our method of determining the meaning of
variables.
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68 inconsistent sets are attributable to decisions made by our method regarding
students’ choice of variable names for angles. Many of these may have been caused
by the awkward handling of Greek in the Andes interface.

The remaining 14 inconsistencies of the 9727 sets in the corpus were caused by
inexplicable choices, such as the student who used j for distance and g for speed.

From our analysis a tutor based on our methods would resolve a student’s intent
on 99% of the submissions and require a dialogue on less that 1% of the submissions.
Of course such dialogs would discourage students from using unconventional name
choices, which is, overall, a good thing.

6. Discussion and Future Work

We see that dimensional consistency allows a tutor to recognize the types of student
variables in a large fraction of equation sets. A tutor, however, needs to provide
useful feedback when presented with erroneous responses, and in particular, to
point to the source of dimensional inconsistency. As the student answers are sets
of equations, this is not always straightforward. For example, consider the student
solution

L = Iω; I =
1
6
mL2.

The first equation has only one consistent dimensional interpretation, with L an
angular momentum [kg·m2/s]. If this conclusion is inserted into the second equation,
it will be declared dimensionally inconsistent, even though that equation is correct
if the L represents instead the length of the side of the rotating square. We would
like a tutor to point to the inconsistent use of L rather than to say either equation
is inconsistent.

The solution is to propagate information in two steps, first only within each
equation until the system is quiescent and then secondly between equations. This
allows the system to isolate errors within equations before errors of inconsistencies
between equations. There are similar problems with inconsistencies of usage between
different terms of a single equation. We intend to evaluate the effectiveness of these
heuristics and to develop additional ones as necessary to ensure that users are
pointed in the right direction when they make mistakes.

7. Conclusion

This paper has shown how domain knowledge combined with heuristic constraint
propagation can be used to determine the context and implicit information con-
tained in student answers, specifically the dimensions of variables in systems of
equations. This approach has been tested and evaluated on answers from students
at two institutions. The results show that the technique uniquely determined the
dimensions of all the variables in 91–92% of the sets of equations. By asking for
dimension information about one variable, an additional 3% of the sets can be
determined.
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Scaffolding is a technique that is useful and helpful to beginning students. Af-
ter some experience, students would benefit from having the scaffolding removed.
The experiments validate the hypothesis that our technique allows us to remove the
scaffolding from a physics tutoring system and still determine the dimensions of the
variables used in the equations. A tutorial system that accepts equations from stu-
dents without requiring them to explicitly define each variable used can make very
effective use of physical dimensionality constraints and standard variable naming
conventions. These can help identify the physical quantities corresponding to each
student-chosen variable name. The heuristics rarely lead to mistaken assumptions,
and in most cases completely determine the dimensionality subclass to which each
variable belongs. This encourages us to continue to the next step: given a problem
statement and thereby a canonical set of variables relevant to the problem, to as-
sociate each student variable with the physics concept it represents first, and then
to try to determine the corresponding member of the canonical set.
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