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Abstract.
This paper describes our continuing work on developing tutoring systems where

the scaffolding may be relaxed. This requires the tutoring system to determine more
of the context of answers. In particular, we examine issues of identification of the
meaning of variables in systems of equations that solve college level introductory
physics problems. In earlier work we developed techniques that worked for a small set
of problems and evaluated them on a small number of students. The work described
here covers the extension to and evaluation of a much larger class of problems and a
larger number of students. The results show that our technique uniquely determines
the dimensions of all the variables in 83% of the sets of equations. By asking the
student for dimension information about one variable, an additional 5% of the sets can
be determined. Thus a physics tutoring system can use this technique to reason about
a student’s answers even when the scaffolding and context are removed.
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1 Introduction

In teaching problem solving, Intelligent Tutoring Systems (ITS) often employ a rigid and
explicit framework to guide the student along a definite sequence of steps. This mechanis-
m called “scaffolding” is pedagogically sound and is beneficial to beginning students in the
subject, because it helps them go through each step in detail. After some experience, students
internalize and combine some of these steps, and a human tutor would not require the stu-
dent to explicitly demonstrate the most basic steps. At some point, the scaffolding should be
removed from the tutoring system.

Removing the scaffolding puts a greater burden on both the student and the tutoring sys-
tem. The student must do more on their own without guidance from the tutor and the system
must now interpret answers that may be in a different sequence or may have incorporated
some basic assumptions.

This paper describes our continuing work on developing tutoring systems where the s-
caffolding is relaxed. In particular, we examine issues of identification of the meaning of
variables in equation sets that solve college level introductory physics problems. In earlier
work we developed techniques that worked for a small set of problems and evaluated them
on a small number of students. The work described here covers the extension to and evalu-
ation of a much larger class of problems and a larger number of students. The results show
that the technique uniquely determines the dimensions of all the variables in 83% of the sets
of equations. By asking for dimension information about one variable, an additional 5% of
the sets can be determined.

2 Algebraic Physics Problems

Physics uses sets of algebraic equations to specify the interactions of a system of objects.
One of the main differences between generic algebraic equations and algebraic equations
describing a relationship in physics is that the latter must be dimensionally consistent. Two
algebraic equations in physics are shown below.

T − m1 ∗ g = m1 ∗ a (1)

a1 = −a2 (2)

Algebraically speaking, these equations could be added to one another to form a new e-
quation. However in physics, each of the variables, constants, terms, expressions, and even
equations must have dimensions. Further they can only be combined using dimensionally
consistent operations. Equation 1 is likely to have the dimensions of force (kg · m/s2) while
equation 2 would have dimensions of acceleration (m/s2). It would thus be incorrect to add
these equations since that operation would violate dimensional consistency. Physically s-
peaking, the variables represent physical properties of an object or a system of objects and
the equations describe the constraints between these quantities given by the laws of physics.

2.1 Issues in Removing the Scaffolding

Removing the scaffolding imposes an additional computational requirement on tutoring sys-
tems. We illustrate this with an example problem based on Atwood’s machine, a pulley with
two masses, m1 and m2 hanging at either end, as shown in Figure 1.
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Figure 1: Atwoods Machine

A common problem based on Atwood’s machine asks the student for the equation(s) that
would determine the acceleration of the mass m1, assuming that m1 and m2 are not equal.
Equations 3 through 6 represent a solution to the problem.

T1 − m1 ∗ g = m1 ∗ a1 (3)

T2 − m2 ∗ g = m2 ∗ a2 (4)

T1 = T2 (5)

a1 = −a2 (6)

From a pedagogical standpoint, physics instructors teach beginning students that the steps
involved in solving problems of this type are:

1. variable definition: Each variable is defined as to which object(s) and property it refers
to. In some cases, the time period when this variable is applicable is also defined.

2. identification of physics laws: Each applicable physics law, e.g., force balance or con-
servation of momentum, must be identified and the objects that they apply to must be
specified.

3. instantiation of physics laws: The general physics laws are stated as equations with gen-
eral variables. Each specific variable specified from the first step is substituted as appro-
priate. The result is an equation or system of equations relating the interactions between
objects or systems of objects in the current problem.

As students become accustomed to the vocabulary of the domain, they start using prob-
lem solving “shortcuts”. Instead of defining each variable explicitly, the students select from
a dictionary of well-known physics variables to represent the properties that they desire. For
example in force balance problems, variables beginning with m typically represent masses
while variables beginning with an a usually represent accelaration. Thus the naming of a vari-
able implicitly specifies the dimensions or properties. The judicious and consistent selection
of subscripts with each variable specifies the object(s) that the variable refers to. For example,
m1 and a1 would refer to the mass and acceleration of the same object while p1,t1 might refer
to the momentum of object 1 at time t1.
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When the scaffolding is removed, the tutoring system must be able to determine the con-
text of the system of equations. For example, the student might choose to use a single variable
a to represent acceleration. The resulting system of equations is shown below.

T1 − m1 ∗ g = m1 ∗ a (7)

T2 − m2 ∗ g = −m2 ∗ a (8)

T1 = T2 (9)

The tutor must determine that (1) the variable a has the dimensions of acceleration (kg ·

m/s2), (2) the single variable is mapped to the acceleration of object 1 and that (3) the ac-
celerations of the other objects are replaced by an algebraic substitution using Eq. 6. In this
paper, we focus on the first step, that of determining the dimensions of each variable. Our
preliminary work in addressing the second step, that of mapping the variables to objects is
described in [6].

3 Prior Work

Checking for dimensional consistency is a important first step for a physics tutoring system as
it can then focus on reasoning about dimensionally correct equations only. Existing systems,
e.g. ANDES [2] and PHYSICS-TUTOR [4], require that the dimensions of each variable and
constant be known a priori either through a knowledge base of variables and constants or by
having the student define them. Once these dimensions are known, it is a fairly simple step
to determine if the equation is dimensionally consistent by using some form of “dimension
mathematics”.

There are many systems that use constraint propagation to ensure consistency of values of
variables. Examples of such systems include VEXED [9], OPIS [8]. Their use of constraint
propagation is similar except that they are propagating values and not dimensions.

There has also been some work done on adding dimension specifications to programming
languages to support compile-time [7, 3] and run-time [1] detection of dimension errors.
These systems are more like strongly typed programming languages where every variable
has to be defined and has a type. Our system is analogous to a weakly typed language where
variables are partially defined on first use and their types are inferred from the context.

4 Determination of Dimensions

In an earlier paper [5], we described an approach for determining the dimensions of every
variable in an algebraic equation. The earlier version of the technique combined the use of a
knowledge base of commonly used physics variables and constants with constraint propaga-
tion.

A constraint graph is built where variables in the equation are instantiated as leaf nodes
and internal nodes represent operators, e.g., +,−, ∗, /, =, and functions, e.g., cos, sin, tan.
The value at each node represents the set of possible dimensions for that node. The knowl-
edge base is used to determine the probable dimensions of each variable. Each entry in the
knowledge base consists of a name (a string) and values for each dimension. The initial value
for each variable node is determined by matching the names in the knowledge base with the
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variable. If the name in the knowledge base is a prefix of the variable, then it is considered
a match. There may be more than one possible combination for a variable as it may match
several names in the knowledge base or a name may have multiple possible values. Constraint
propagation is used to propagate dimension information to other terms and literals to (1) in-
fer dimension information and (2) determine dimensional consistency. The algorithm can use
partial information about the dimensions of a variable and combine that with knowledge of
operators and functions (which are just operators) to completely determine dimensions. In
essence knowledge, even incomplete knowledge, propagates from one part of the equation
to another. This permits the algorithm to reason about dimensional consistency when the
variables are not explicitly defined.

This algorithm was evaluated on roughly 350 answers to four physics problems from 88
different students in an introductory physics course for engineers and science majors. Only
5% of the submitted answers (two to three answers for each problem) were ambiguous and
required additional information from the student. The technique was subsequently evaluated
on equation sets extracted from the log files of the ANDES system [2].

4.1 The ANDES data

The ANDES system is also a tutoring system for introductory college level physics. It has
a much large database of problem types and is in current use at the United States Naval
Academy. Logs of student answers and tutor responses have been maintained since the initial
introduction of the ANDES system. We extracted the student answers from one semester (Fall
2000) and used it to evaluate our system. The key features of this data set (and of the ANDES
system) are:

• large database of problems and problem types: The ANDES system has a repository of
approximately one hundred problems. These problems are much more diverse than the
ones previously analysed.

• large number of equation sets: The ANDES data analyzed contained 9,865 equation sets
in 6,000 logs. These logs were created by many students each who worked on many
problems. The system recorded answers, including partial answers, making the number
of equation sets larger than the number of logs. Many of these equation sets contain
incomplete answers, i.e., the student has not entered all the equations. Our analysis does
not group equations sets by either student or problem but rather treats all 9,865 equations
sets as a single corpus.

• variables are explicitly defined before use. The ANDES framework requires that the stu-
dents define all variables before they can be used in equations and provides a graphical
interface to help them with this step.

• use of numeric values: The questions in ANDES are given in terms of explicit numeri-
cal quantities and require numeric answers. While students were strongly encouraged to
generate complete algebraic solutions before substituting numeric values to arrive at the
answer, students frequently use numeric values in place of variables at earlier stages.

The data from the ANDES logs provides a good evaluation of our technique in several
ways that our original experiments did not. These are:
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• how general is our technique? how well will it perform on a more diverse set of problems?

• how well will the technique perform on incomplete sets of equations?

4.2 Initial Results

The knowledge base was greatly expanded to handle the larger class of problems. Entries
were created for all uses of variable names in physics. Possible dimension values for each
variable were determined by matching the beginning of variable names against a single list of
well-established prefixes. The initial results showed that the dimensions could be completely
determined for a small set of equations (less than 50%). There were many sets of equations
that were categorized as consistent but ambiguous, i.e., at least one variable had more than
one valid value for dimensons was applicable.

4.3 Analysis and Extensions

Analysis of the results showed problems that were not revealed with the earlier smaller data
set. Most equation sets had more than one set of possible dimension assignments for the set of
variables. We observed that because we were using possible concepts from all of physics, in-
cluding electricity and magnetism and modern physics (which were not covered in the Andes
problems) the range of choices of dimensionality were often very large and the constraints
are often insufficient to uniquely determine the correct choice.

This problem was fixed by (1) splitting the knowledge base into broad subfields of rel-
evance and (2) adding a more powerful matching capability to the knowledge base. The
knowledge base was split up into disjoint categories, e.g., Newtonian mechanics, electrici-
ty and magnetism, and modern physics, and the ANDES problems were annotated to specify
that they were problems in Newtonian mechanics. In addition, instead of just searching for
a matching prefix, the knowledge base now supports three types of matches. Each entry into
the knowledge base consists of (1) a string, (2) a set of dimensions, (3) category and (4) type
of match. The three types of matches are:

• prefix match: Any variable name whose beginning matches the string of an entry in the
knowledge base will have the associated set of dimensions as a possibility. The variable
alp will prefix match with the entry a and will have dimensions associated with accelera-
tion as one of the valid possibilities.

• pre-emptive match: Any variable name whose prefix matches the string of an entry in the
knowledge base will pre-empt any prefix matches. The variable alpha1 will pre-emptively
match with alpha and have radians as one of the possible dimensions. This match will
also remove acceleration (and any other prefix matches) from the list of possibilities.

• exact match: Any variable name that matches exactly with the string of an entry in the
knowlege base will have the associated set of dimensions. This match overrides and ex-
cludes all other matches. The variable G will have the dimensions of the univeral gravita-
tional constant and the match will remove all prefix or pre-emptive matches with G. The
variable G1 however will not be an exact match.
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The improved matching capability provided us with ways to specify preferences amongst
the different possible matches for a variable.

Another problem made it more difficult to generate good feedback when the equations
are not dimensionally consistent. Depending on the order in which constraints are checked,
information from an inconsistent equation may be propagated to other equations before an
inconsistency is discovered. At that point, it is difficult to determine the origin of the prob-
lem, i.e., which equation was inconsistent. In addition, a variable can be used in multiple
equations and more than once in an equation. The constraint graph only maintains one copy
of each variable since all occurrences have the same set of dimensions. This makes it difficult
to determine which instance of the variable was used incorrectly when an inconsistency is
discovered. These problems were solved with the following changes to the constraint graph
and associated procedures.

• create a leaf node for each occurence of a variable: Instead of having only one node
for each variable, a node is created for each occurrence of a variable. When a variable is
determined to be inconsistent, the specific instance that is at fault can then be pinpointed.
To maintain consistency within the system of equations, a new type of constraint is added,
an identity constraint. The constraint connects all nodes that are instances of the same
variable and restricts the nodes to have the same set of dimensions.

• delay propagation across terms and equations: Essentially, this heuristic favors propaga-
tion of information to (1) nodes in the same local region and then to (2) nodes “further
away”. This is a means of making it easier to detect inconsistencies in the regions where
the fault lies.

The goal of these changes is to delay information propagation across terms and equations
and maximize the inference of dimension values. This heuristic is intended to discover incon-
sistencies as locally as possible before incorrect dimension information can be propagated to
other terms or equations.

4.4 Final Evaluation

The changes described in the previous subsection were implemented and the resulting mod-
ule was re-tested on the data from the ANDES logs. The results are shown in Table 1 where
the column labelled Unique is the number of sets of equations where the dimensions of all
variables and constants are uniquely determined, the column labelled Ambiguous is the num-
ber of sets of equations where there is at least one variable or constant that has more than one
possible valid set of dimensions. The first row (Full KB,full match) shows the results from
using a knowledge base with (1) all three matching techniques and (2) information about the
use of variables throughout all of Physics. The full knowledge base contains 171 entries. The
second row (Newton KB, full match) shows the results from using a knowledge base with
(1) all three matching techniques and (2) information about Newtonian mechanics only. This
knowledge base contains 109 entries.

As described earlier, the ANDES system permits the students to use numeric values in
place of variables, e.g., 9.8 instead of g for gravity. Consequently, constants can sometimes
have unstated dimensions and the system has to treat each constant initially as having all di-
mension possibilities. In the evaluation, we found that there were many equation sets where
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Set Unique Ambiguous Inconsistent %Unique
Full KB, full match 4921 4396 548 50%

Newton KB, full match 7470 1983 412 76%
Newton KB, full match, constants 8195 1258 412 83%

Newton KB, full match, constants, 1 variable 8677 776 412 88%

Table 1: Evaluation on the ANDES data

the dimensions of all the variables were determined but the dimensions of some of the con-
stants were ambiguous. Further examination revealed that the constants should be treated
as dimensionless but the initial assumption prevented this. The third row (Newton KB, full
match, constants) shows the result of treating these equation sets where only constants were
ambiguous, as unique (an accounting shift). The results show that without any special infor-
mation about ANDES, e.g., variable naming conventions, our technique can determine the
dimensions of all the variables in 83% of the sets of equations even when most of the sets
are incomplete. The last row (Newton KB, full match, constants, 1 variable) shows the in-
crease in the number of unique sets if the system could ask the student for the dimensions of
one variable. Four hundred of the ambiguous sets of equations (or 4.89% of the total) from
the second row have only one variable that is not uniquely defined. Thus, by asking at most
one question of the student, the technique can uniquely determine the dimensions of all the
variables in 88% of the sets of equations.

5 Conclusion

This paper has shown how domain knowledge combined with heuristic constraint propaga-
tion is used to determine the context and implicit information contained in student answers,
specifically the dimensions of variables in systems of equations. This approach has been test-
ed and evaluated on answers from students at two colleges. The results show that the tech-
nique uniquely determined the dimensions of all the variables in 83% of the sets of equations.
By asking for dimension information about one variable, an additional 5% of the sets can be
determined.

Scaffolding is a technique that is useful and helpful to beginning students. After some
experience, students would benefit from having the scaffolding removed. The experiments
validate the hypothesis that our technique allows us to remove the scaffolding from a physics
tutoring system and still be able to determine the dimensions of the variables used in the
equations.
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