
Last Latexed: November 26, 2013 at 10:17 1

Lecture 25 Nov. 26, 2013

Non-Abelian Gauge Theory
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Today we are going to begin a discussion of Gauge Field Theory, not just
for a better understanding of the Maxwell Field of QED, but also to gener-
alize gauge invariance to non-Abelian groups. Non-Abelian gauge fields are
the basis not only of Quantum Chromodynamics (QCD), our current under-
standing of the strong interactions, but also the foundation of the Glashow-
Salam-Weinberg theory of electroweak interactions.

I am going to be somewhat more explicit than Peskin and Schroeder, in
using latticization to understand the meaning of the gauge fields and the
covariant derivatives.

Gauge fields are all about continuous symmetry groups (Lie groups) and
I don’t know how much you already know about these. I will assume you at
least know the rotation group and its Lie algebra and arbitrary spin repre-
sentations, as we have already used this in analyzing the representations of
the Poincaré group. The general discussion for a wider set of groups does
not introduce much beyond what you can already see with SO(3), but there
are some web pages on group theory which can fill in your knowledge

• “Lightning review of groups”.

• “Notes on Representations, Adjoint Rep., Killing Form, and the Anti-
symmetry of c

k
ij ”.

• “Group Invariant Metric”.

We begin with a theory that has a non-Abelian internal symmetry. That
is, it is invariant under G: φ′

i(x) = Mij(g)φj(x), for g ∈ G, where M is a
linear representation of the group G, and g is a fixed group element, the same
at every space-time point. This is called Global Symmetry. Our standard

theory, say HI =
(

∑N
1 φ2

j

)2
, is invariant under SO(N). But it is not invariant

if we perform SO(N) transformations which vary from one space-time point
to another. That is, it does not have local SO(N) symmetry. We are going to
ask how we can deform our theory so that it is invariant under this much
larger set of symmetry transformations,

φ′

i(x) = Mij(g(x))φj(x).
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For SO(N) we can think of the group action as a change of coordinate systems

for expression the N -vector ~φ, so we are looking for a theory which is invariant
under independently changing coordinate systems, or basis vectors, at each
point. Terms without derivatives in the lagrangian are automatically locally
invariant if they are globally, but terms involving derivatives, which compare
fields at different points, require a definition of parallel transport. In ordinary
(non-gauge) theories, this definition is fixed, and we usually use basis vectors
for which parallel transport means leaving the components unchanged. But
in Gauge theories, the law of parallel transport becomes dynamical. At each
point x and each direction µ, we have an infinitesimal generator of the group,
or Lie algebra element,

Aµ(x) = A(b)
µ Lb.

We could then make a locally gauge invariant theory by replacing the deriva-
tive by the covariant derivative

∂µφi → (Dµφ)i = ∂µφi − igMij(Aµ)φj = ∂µφi − igA(b)
µ Mij(Lb)φj .

Then

φ′

i(x) =
(

eiλ
(b)(x)M(Lb)

)

ij

φj(x)

A′

µ = eiλ

(

Aµ +
i

g
∂µ

)

e−iλ
(

λ = λ(b)Lb

)

implements the local symmetric of the theory, with G(x) = eiλ.

This is just an introduction to the main part of the lecture, in which this is
explained in terms of lattice theory in “Gauge Theory on a Lattice”.


