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Lecture 9 Oct. 3, 2013
Quantization of the Dirac Field

Last time we found the Lagrangian density for a Dirac field ψ, which is
a four component complex field,

L = ψ̄(iγµ∂µ −m)ψ.

Thus the canonical momentum conjugate to ψ is

∂L

∂ψ̇
= iψ̄γ0 = iψ†,

so the pq̇ term in H =
∑

pq̇ − L just cancels off the time piece, and the
Hamiltonian density is

H =
∫

d3x ψ̄(−i~γ · ~∇ +m)ψ

=
∫

d3xψ†(−i~α · ~∇ +mβ)ψ,

in terms of the ~α := γ0~γ, β = γ0 used in one-particle quantum mechanics,
where the operator hamiltonian is

hD = −i~α · ~∇ +mβ.

We will skip pages 52-57, which explains what goes wrong if we try to
treat the field ψ as an almost commuting c-number field, in the way we did
for the Klein-Gordon field φ. I am not going to review those reasons, but
just present that instead, we need to treat ψ as an almost anti-commmuting

object. That is, in the classical approximation we have for two components
of the fields at different points

ψa(~x )ψb(~y ) = −ψb(~y )ψa(~x ),

and similarly for ψ with ψ† and ψ† with itself. That is to say, classically the
anti-commutator,

{A,B} := AB +BA

of two Dirac fields vanishes. Quantum mechanically these are modified, just
as for ordinary (bose) degrees of freedom momentum and position fail to
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commute. Thus the anti-commutation relations (at equal times) are modified
to

{ψa(~x, t), ψb(~y, t)} = 0

{ψa(~x, t), ψ
†
b(~y, t)} = δabδ

3(~x− ~y)

{ψ†
a(~x, t), ψ

†
b(~y, t)} = 0

A complete set of classical solutions of the Dirac equation are given by

us(~p ) e−ip·x and vs(~p ) eip·x for all ~p, s = 1, 2, p0 > 0,

with us(~p) and vs(~p) given by 3.59 and 3.62, and satisfying 3.66 and 3.67.
Thus we can expand the quantum field ψ in terms of these, with coefficients
as

~p and bs †~p , which will become operators upon quantization. Thus

ψ(x) =
∫

d3p

(2π)3

1
√

2E~p

∑

s

(

as
~p u

s(~p )e−ip·x + b
s †
~p vs(~p )eip·x

)

(1)

ψ†(x) =
∫

d3p

(2π)3

1
√

2E~p

∑

s

(

bs~p v
s †(~p )e−ip·x + a

s †
~p u

s †(~p )eip·x
)

(2)

(with p0 = +
√

~p 2 +m2 understood)

We may see that the anticommutation relations for the fields (3.102) will
be obtained if the creation and annihilation operators satisfy

{

ar
~p , a

s †
~q

}

=
{

br~p , b
s †
~q

}

= (2π)3δ3(~p− ~q)δrs

{

ar
~p , a

s
~q

}

=
{

ar
~p , b

s †
~q

}

=
{

br~p , b
s †
~q

}

= 0

and also their hermitean conjugates.
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To see the nontrivial one, note

{

ψ(~x, t), ψ†(~y, t)
}

=
∫

d3p d3q

(2π)6

1

2
√

E~pE~q

∑

r,s

(

{

ar
~p , a

s †
~q

}

e−i(p0−q0)te−i(~p·~x−~q·~y)ur(~p )us †(~q )

+
{

b
r †
~p , b

s
~q

}

ei(p0−q0)tei(~p·~x−~q·~y)vr(~p )vs †(~q )
)

=
∫

d3p d3q

(2π)6

1

2
√

E~pE~q

∑

r,s

(2π)3δ3(~p− ~q)δrs

(

e−i(p0−q0)te−i(~p·~x−~q·~y)ur(~p )us †(~q )

+ei(p0−q0)tei(~p·~x−~q·~y)vr(~p )vs †(~q )
)

=
∫

d3p

(2π)3

e−i~p·(~x−~y)

2E~p

∑

r

(

ur(~p )ur †(~p ) + vr(−~p)vr †(−~p)
)

,

where in the last term we replaced the integral over ~p by −~p. But from
(3.66–3.67),

∑

r

ur(~p )ur †(~p ) = (γ · p+m)γ0 = E~p − ~α · ~p+mβ

and
∑

r

vr(~p )vr †(~p ) = (γ · p−m)γ0 = E~p − ~α · ~p−mβ,

so
∑

r

(

ur(~p )ur †(~p ) + vr(−~p)vr †(−~p)
)

= 2E~p 1I.

So
{

ψa(~x, t), ψ
†
b(~y, t)

}

=
∫

d3p

(2π)3
e−i~p·(~x−~y)1Iab = δ3(~x− ~y)δab.

We will work out the Hamiltonian

H =
∫

d3xψ̄(−i~γ · ~∇ +m)ψ

in terms of (1) and (2), noting that

(−i~γ · ~∇ +m)ψ =
∫

d3p

(2π)3

1
√

2E~p

∑

s

(

as
~p (~γ · ~p+m) us(p)e−ip·x

+bs †~p (−~γ · ~p+m) vs(p)eip·x
)
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But as (γµpµ −m)u(~p ) = 0 = (γµpµ +m)v(~p ), the parentheses in front of u
and v reduce to E~pγ

0 for u and −E~pγ
0 for v. So

H =
∫

d3x
d3q

(2π)3

d3p

(2π)3

1
√

2E~q

∑

r

(

br~q v
r †(~q )e−iq·x + a

r †
~q u

r †(~q )eiq·x
)

√

2E~p

∑

s

(

as
~p u

s(~p )e−ip·x − b
s †
~p vs(~p )eip·x

)

=
∫

d3x
d3q

(2π)3

d3p

(2π)3

1

2

√

E~p

E~q

∑

r

∑

s
[

br~q a
s
~p v

r †(~q )us(~p )e−i(p+q)·x − br~q b
s †
~p vr †(~q )vs(~p )ei(p−q)·x

+ar †
~q as

~p u
r †(~q )us(~p )e−i(p−q)·x − a

r †
~q b

s †
~p ur †(~q )vs(~p )ei(p+q)·x

]

=
∫

d3p

(2π)3

1

2

∑

r

∑

s

[

br−~p a
s
~p v

r †(−~p)us(~p )e−2iEpt − br~p b
s †
~p vr †(~p )vs(~p ) +

a
r †
~p as

~p u
r †(~p )us(~p ) − a

r †
−~p b

s †
~p ur †(−~p)vs(~p )e2iEpt

]

=
∫

d3p

(2π)3
E~p

∑

r

[

−bs~p b
s †
~p + a

s †
~p as

~p

]

≈
∫

d3p

(2π)3
E~p

∑

r

[

a
s †
~p as

~p + b
s †
~p bs~p

]

where in the second line the x integral gives (2π)3δ3(~p±~q) which cancels the q
integral, and in the third line we can use ur †(−~p) vs(~p ) = vr †(−~p) us(~p ) = 0
and ur †(~p ) us(~p ) = vr †(~p ) vs(~p ) = 2E~p δ

rs from 3.60, 3.63 and 3.64, and we

dropped an infinite constant from the anticommutator {bs †~p , b
s
~p} in the last

expression.
Notice that H has the same form as for a complex scalar field, and the

commutation relations
[

H, a†
]

and
[

H, b†
]

work the same, even though the

commutators of a and a† are replaced with anticommutators, because H is
quadratic, and

∑

p

[

a
†
~p a~p, a

†
~q

]

=
∑

p

a
†
~p

{

a~p, a
†
~q

}

−
∑

p

{

a
†
~p, a

†
~q

}

a~p = a
†
~q.

Please read page 58 and the top of page 59. Then we can

then skip to the bottom of page 60, as we have already

discussed the Lorentz transformation properties. But do

read the last paragraph on p. 60 and pp 61-65.


