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We have seen that we expect to construct our field theory from fields
which transform “simply” under Poincaré transformations, with

U(Λ)φa(x)U
−1(Λ) = Dab(Λ

−1)φb(Λx), (1)

where D is a finite dimensional representation of the Lorentz group. We also
saw that such representations are in fact products of representations of two
SO(3) groups generated by ~L± = 1

2
( ~J ± i ~K). Thus in general there are two

spins, s± and the field has two indices, the eigenvalues of ~L± z respectively.
The derivative terms of (L6 Eq. 10) can be simplified

~θ · ~Jµ
νx

ν∂µ = +
1

2
ǫijkθi (Ljk)

µ

ν
xν∂µ = i~θ · (~x× ~∇),

~κ · ~Kµ
νx

ν∂µ = κi (L0j)
µ

ν
xν∂µ = −i~κ · ~x∂0 − it~κ · ~∇.

Then the operators ~J and ~K have commutators with fields given by
[

~θ · ~J, φm+,m−
(x)

]

= −DA
m+,m′

+
(~θ · ~L)φm′

+
,m−

(x)

−DB
m− ,m′

−

(~θ · ~L)φm+,m′

−

(x)

+i~θ · (~x× ~∇)φm+,m−
(x)

[

~κ · ~K, φm+,m−
(x)

]

= +iDA
m+,m′

+
(~κ · ~L)φm′

+
,m−

(x)

−iDB
m− ,m′

−

(~κ · ~L)φm+,m′

−

(x)

+ − i~κ · ~xφ̇m+,m−
(x) − it~κ · ~∇φm+,m−

(x).

In particular, we considered a field (whose name I will now change to ψR,
which transforms with A = 1

2
, B = 0, and we saw that

[~J, ψR m(x)] = −
1

2
~σmm′ψR m′(x) + i~x× ~∇ψR m(x).

We will consider this field further, but before we do, let us also note that the
Poincaré algebra [Lαβ ,Pν] = −igανPβ + igβνPα means

[Ji,Pj] =
1

2
ǫiab[Lab,Pj] = iǫijkPk, [Ji,P0] = 0. (2)

[Ki,Pj] = [L0i,Pj] = −iδijP0, [Ki,P0] = [L0i,P0] = −iPi. (3)
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The (1
2, 0) Field ψR

We are going to look for scalar combinations of fields, in order to construct
a Lagrangian density L. The coordinate derivative terms will work out as
they should for any representation, so in what follows I am going to drop the
derivative terms, with just a warning (+d.t.) that I have done so.

First suppose that ψR transforms with A = 1

2
, B = 0, so

[Ji, ψR] = −
1

2
σiψR, [Ki, ψR] = +i

1

2
σiψR (+d.t.).

Hermitean conjugate gives, as J and K are hermitean operators on the hilbert
space, but the 2 × 2 representation of K is not,

[Ji, ψ
†
R] =

1

2
ψ

†
Rσi, [Ki, ψ

†
R] = +i

1

2
ψ

†
Rσi, (+d.t.)

What can we make that is quadratic in ψ and its hermitian conjugate,
and how do these terms transform?

[Ji, ψ
†
RψR] =

1

2
ψ

†
RσiψR −

1

2
ψ

†
RσiψR = 0 (+d.t.)

[Ji, ψ
†
RσjψR] =

1

2
ψ

†
R[σi, σj]ψR = iǫijkψ

†
RσkψR (+d.t.)

[Ki, ψ
†
RψR] = iψ

†
RσiψR (+d.t.)

[Ki, ψ
†
RσjψR] =

i

2
ψ

†
R{σi, σj}ψR = iδijψ

†
RψR (+d.t.)

Combining with (2) we see that ψ†
RψR, ψ†

RσjPjψR and ψ†
RP0ψR commute

with Ji. We seek a combination which commutes with Ki as well.
[

Ki, ψ
†
RψRP0

]

=
[

Ki, ψ
†
RψR

]

P0 + ψ
†
RψR [Ki, P0]

= iψ
†
RσiψRP0 − iψ

†
RψRPi (4)



Ki,
∑

j

ψ
†
RσjψRPj



 =



Ki,
∑

j

ψ
†
RσjψR



Pj + i
∑

j

ψ
†
RσjψR [Ki, Pj]

= iψ
†
RψRPi − iψ

†
RσiψRP0 (5)

so


Ki, ψ
†
RψRP0 +

∑

j

ψ
†
RσjψRPj



 = 0 (+d.t.).
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The (0, 1
2) Field ψL

On the other hand, suppose ψL transforms with A = 0, B = 1

2
, so

D(Ji − iKi) =
1

2
σi, D(Ji + iKi) = 0 =⇒ D(Ji) =

1

2
σi, D(Ki) = +i

1

2
σi,

The commutations with Ji are therefore all the same, while the one of the
fields with Ki are reversed, but not those of K with P . So now the first
terms in the final expressions in (4) and (5) have their signs reversed, and
the combination which is a scalar is

ψL
†ψLP0 −

∑

i

ψL
†σiψLPi.

Notice there is no invariant we can make from just ψR without a momen-
tum, or from just ψL without a momentum, but if we mix ψR with ψL, we
see ψ†

RψL commutes with J as before, and also

[Ki, ψ
†
RψL] = i

1

2
ψ

†
RσiψL − i

1

2
ψ

†
RσiψL = 0,

so ψ†
RψL is an invariant. Similarly ψL

†ψR is invariant..

1 Invariant Lagrangians

The momentum transforms the same way a derivative does, so we see that
the Hermitean quadratic invariants we can form from ψR and ψL are

iψ
†
R∂0ψR + iψ

†
R~σ · ~∇ψR

iψ
†
L∂0ψL − iψ

†
L~σ · ~∇ψL

ψ
†
RψL + ψ

†
LψR

and iψ
†
RψL − iψ

†
LψR

The only one which involves only ψR is the first, and if we vary with respect
to ψ†

R, we get the equation of motion

i∂0ψR + i~σ · ~∇ψR = 0.
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Multiplying by −i(∂0 − ~σ · ~∇) gives1

0 = (∂0 − ~σ · ~∇)(∂0 + ~σ · ~∇)ψR = (∂2

0
− σi∂iσj∂j)ψR

= (∂2

0
−

1

2
{σi, σj}∂i∂j)ψR = (∂2

0
− δij∂i∂j)ψR

= (∂2

0
− ~∇ 2)ψR = ∂µ∂µψR.

In the second line we have used the fact that ∂i∂j = ∂j∂i to replace σiσj by
half the anticommutator, which we then evaluate to a Kronecker delta. We
see the result is that ψR obeys the Klein-Gordon equation, but with zero
mass. The same is true for the second lagrangian, with only ψL. Only by
including a term with a mixture of ψR and ψL can we create a mass.

Let’s define2

σ
µ
R = (1, σi), and σ

µ
L = (1,−σi).

Then we can write the first two lagrangian densities as iψ
†
Rσ

µ
R∂µψR and

iψ
†
Lσ

µ
L∂µψL, and the equations of motion from them individually as σµ

R∂µψR =
0 and σµ

L∂µψL = 0.
If, however, we take a combination to form the lagrangian,

L = iψ
†
Rσ

µ
R∂µψR + iψ

†
Lσ

µ
L∂µψL −m(ψ†

RψL + ψ
†
LψR),

we get the equations of motion

iσ
µ
R∂µψR −mψL = 0

iσ
µ
L∂µψL −mψR = 0

or
(

−m iσ
µ
R∂µ

iσ
µ
L∂µ −m

) (

ψL

ψR

)

= 0.

Because we are mostly interested in massive fields, we will prefer to con-
sider ψL and ψR as parts of a four component field. Define

ψ =
(

ψL

ψR

)

and γµ =
(

0 σ
µ
R

σ
µ
L 0

)

1Properties of ~σ: σj = σ
†
j ; σiσj = δij+iǫijkσk, so {σi, σj} = 2δij and [σi, σj ] = 2iǫijkσk.

The usual representation, which we will assume, is

σx =

(

0 1
1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0
0 −1

)

.

2The book, and indeed everyone else who defines these, uses σµ for what I call σ
µ
R and

σ̄µ for what I call σ
µ
L. But that notation is not ideal.
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which means

γ0 =
(

0 1I2×2

1I2×2 0

)

=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, γi =
(

0 σi

−σi 0

)

.

Then the equation above becomes

(iγµ∂µ −m)ψ = 0.

This is known as the Dirac equation.
A good part of learning how to calculate scattering amplitudes for fermions

is becoming agile with the algebra of the γ matrices. From

γµγν =
(

σ
µ
Rσ

ν
L 0

0 σ
µ
Lσ

ν
R

)

we see that
{γµ, γν} = 2gµν × 1I4×4, (6)

which of course means γ02
= 1, γi2 = −1.

Premultiplying the equation of motion 0 = (iγµ∂µ−m)ψ by −(iγν∂ν +m)
we see that

0 = −(iγν∂ν +m)(iγµ∂µ −m)ψ =
(

1

2
{γν , γµ} ∂ν∂µ +m2

)

ψ

=
(

gνµ∂ν∂µ +m2
)

ψ =
(

∂µ∂µ +m2
)

ψ,

so the Dirac equation implies the Klein-Gordon equation with mass m, but
has additional information in it.

The γ matrices will prove to be much more often used than our σµ
L and

σ
µ
R, so we need to reexpress our Lagrangian in terms of them. Notice that

γ0γµ =
(

σL 0
0 σR

)

so our lagrangian can be written

L = iψ†γ0γµ∂µψ −mψ†γ0ψ.

That looks very strange, not even covariant, but the reason for this is that
ψ† does not transform as we might expect, because ψ transforms under a
representation D(Λ) = Λ 1

2

(or (1

2
, 0) + (0, 1

2
)), which is not a unitary repre-

sentation of the Lorentz group, because ~L± involves i ~K. Under ψ → Λ 1

2

ψ,
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we have ψ†ψ → ψ†Λ†
1

2

Λ 1

2

ψ, and if Λ 1

2

were unitary we would have Λ†
1

2

= Λ−1
1

2

,

and ψ†ψ would be invariant, as it appears. But this is not the case.
What is Λ 1

2

? It turns out there is a simple expression for its generators
in terms of

Sµν =
i

4
[γµ, γν ] .

From the anticommutation relations of the gammas (6) simple algebraic ma-
nipulations show that D(Lµν) = Sµν obeys the Lorentz algebra commutation
relations, and thus is a representation. In fact, from

Sij =
1

2
ǫijk

(

σk 0
0 σk

)

, S0j = −
i

2

(

σj 0
0 −σj

)

,

we see that this is exactly how ψ transforms, or rather that

Λ 1

2





e
−
i

2
ωµνLµν





 = e
−
i

2
ωµνSµν

.

Now notice that γ−1

0 γµγ0 = γµ = (γµ)†, which means that γ−1

0 S†
µνγ0 =

Sµν and γ−1

0 Λ†
1

2

γ0 = Λ−1
1

2

. Thus if we define ψ̄ := ψ†γ0, under a Lorentz

transformation

ψ̄ → ψ†Λ†
1

2

γ0 = ψ†γ0γ
−1

0
Λ†

1

2

γ0 = ψ̄Λ−1
1

2

,

so ψ̄ψ is invariant, and so is ψ̄γµ∂µψ. Thus we can rewrite the free Dirac
lagrangian density as

LDirac = ψ̄(iγµ∂µ −m)ψ.


