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Lecture 6: The Poincaré Group Sept. 23, 2013

Copyright c©2005 by Joel A. Shapiro

Last time we saw that for a scalar field φ(x), for every Poincaré transfor-
mation Λ : xµ 7→ Λµ

νx
ν + cµ, there is a unitary operator U(Λ) which trans-

forms the field by U(Λ)φ(x)U−1(Λ) = φ(Λx). As for the individual particle
states, we expect there may be sets of fields which, rather than transforming
as scalars, transform within themselves, with

U(Λ)φa(x)U−1(Λ) = Mba(Λ) φb(Λx).

Two successive Poincaré transformations must transform as their composite,

U(Λ2Λ1) φa(x) U−1(Λ2Λ1) = Mca(Λ2Λ1) φc(Λ2Λ1x)

= U(Λ2) U(Λ1) φa(x) U−1(Λ1) U−1(Λ2)

= U(Λ2) Mba(Λ1) φb(Λ1x) U−1(Λ2)

= Mcb(Λ2)Mba(Λ1) φc(Λ2Λ1x)

which requires that Λ 7→ M(Λ) is a representation,

Mca(Λ2Λ1) = Mcb(Λ2) Mba(Λ1),

in the same way as we found for the action on states.
So to discuss fields like the electromagnetic field, which we expect will not

transform like a scalar, we need to understand the possible representations
of the Poincaré group, and in particular the Lorentz subgroup. So it is time
to discuss this group in detail.

For particle theorists a primary requirement of a quantum field theory is
that it be invariant under the Poincaré group, which consists of the proper
orthochronous Lorentz transformations and the translations:

Λ : xµ → x′ µ = Λµ
νx

ν + cµ, (1)

with cµ an arbitrary constant vector. The Lorentz condition on the real
matrix Λ is that it preserve the Minkowski product: if V ′µ = Λµ

νV
ν and

W ′µ = Λµ
νW

ν , then

V µWµ = V ′µW ′

µ = gµνΛ
µ
ρΛ

ν
σV ρW σ

= gρσV
ρW σ
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for any two vectors V and W , from which we can conclude

gµνΛ
µ
ρΛ

ν
σ = gρσ. (2)

In matrix language this is ΛTgΛ = g, a pseudo-orthogonality condition, where
g replaces the identity in the usual orthogonality condition OTO = 1I, with
OT the transpose of the matrix O.

Examining the (00) component of this equation, we have

(Λ0
0)

2 −
3
∑

j=1

(Λj
0)

2 = 1

we see that, because Λµ
ν is real, (Λ0

0)
2 ≥ 1. This divides the Lorentz trans-

formations into those with Λ0
0 ≥ 1, which are called orthochronous because

they preserve the direction of time, and those with negative Λ0
0, which do

not. We may also take the determinant of (2) to conclude (det Λ)2 = 1,
so this divides the Lorentz transformations into those with determinant +1
and those with determinant −1. Only the proper orthochronous Lorentz
transformations, those with positive Λ0

0 and positive determinant, can arise
from a continuous acceleration or rotation, and it is only these which are es-
sential for any high energy theory. The others involve parity or time-reversal,
and are still interesting, but we will delay discussion of them.

Any proper orthochronous Lorentz transformation can be written as the
repeated application of an infinitesimal one. Thus we can write Λ = eaℓL̃ℓ ,
where aℓ are some continuous real parameters describing the group element,
and each L̃ ·

ℓ · is a real 4 × 4 real matrix. As gντ is a constant, differentiating
(2) with respect to aℓ at aℓ = 0 gives

gµνL̃
µ

ℓ ρδ
ν
σ + gµνδ

µ
ρ L̃ ν

ℓ σ = 0, or L̃ℓ σρ + L̃ℓ ρσ = 0,

that is, L̃ℓ ρσ is a real antisymmetric matrix. There are six linearly indepen-
dent 4× 4 antisymmetric real matrices, corresponding to the three rotations
and three directions for Lorentz boosts, and thus there are 6 components to
aℓ.

For a continuous (Lie) group which is connected, as the proper ortho-
chronous Lorentz transformation group is, most1 of the group properties are

1We will see later that some global properties are not determined. An example you
already know comes from the rotation group SO(3) and the group of unitary 2×2 matrices
of determinant 1, SU(2). The generators of these have the same familiar algebra, [Li, Lj] =
iǫijkLk, but a rotation through 2π gives the identity for SO(3) but it takes a rotation by
4π to reach the identity in SU(2). The latter is called the covering group of SO(3).
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determined by the commutation relations of the generators, that is, by the
derivatives of the group elements with respect to the group parameters, eval-
uated at the identity element. The generators form a vector space which is
a Lie algebra. In our case, that means we will learn what we need from the
commutators of the L̃ℓ matrices, together with their commutators with the
translations.

The index ℓ describing the six independant antisymmetric 4 × 4 real
matrices is most conveniently described by a pair of 4 dimensional indices,
with the understanding that L̃αβ = −L̃βα. Please note that L̃αβ , for each
pair α, β, is a matrix, not a matrix element. We may define a basis for the
vector space of generators

(

L̃αβ

)µν
= δµ

αδν
β − δµ

βδν
α.

Matrix multiplication requires lowering one matrix element index,

(

L̃αβ

)µ

ν
= δµ

αgβν − δµ
βgαν

and the commutator is therefore
[

L̃αβ , L̃γζ

]µ

ν
=

(

L̃αβ

)µ

ρ

(

L̃γζ

)ρ

ν
−
(

L̃γζ

)µ

ρ

(

L̃αβ

)ρ

ν

=
(

δµ
αgβρ − δµ

βgαρ

) (

δρ
γgζν − δρ

ζgγν

)

−
(

δµ
γgζρ − δµ

ζ gγρ

) (

δρ
αgβν − δρ

βgαν

)

= δµ
αgβρδ

ρ
γgζν − δµ

αgβρδ
ρ
ζgγν − δµ

βgαρδ
ρ
γgζν + δµ

βgαρδ
ρ
ζgγν

−δµ
γ gζρδ

ρ
αgβν + δµ

γ gζρδ
ρ
βgαν + δµ

ζ gγρδ
ρ
αgβν − δµ

ζ gγρδ
ρ
βgαν

= δµ
αgβγgζν − δµ

αgβζgγν − δµ
βgαγgζν + δµ

βgαζgγν

−δµ
γ gζαgβν + δµ

γgζβgαν + δµ
ζ gγαgβν − δµ

ζ gγβgαν

= gαγ

(

δµ
ζ gβν − δµ

βgζν

)

− gβγ

(

δµ
ζ gαν − δµ

αgζν

)

−gαζ

(

δµ
γ gβν − δµ

βgγν

)

+ gζβ

(

δµ
γgαν − δµ

αgγν

)

= −gαγ

(

L̃βζ

)µ

ν
+ gβγ

(

L̃αζ

)µ

ν
+ gαζ

(

L̃βγ

)µ

ν
− gβζ

(

L̃αγ

)µ

ν

(3)

As must be the case, the commutator of two generators is a linear com-
bination of generators, for any Lie algebra is closed under commutation. We
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have written things as mathematicians do, but physicists generally prefer to
write their group elements as

Λ = e−i
∑

ℓ
aℓLℓ ,

with the extra −i in the exponent, because they expect the group transfor-
mation to act as a unitary operator and would like the generators to act as
hermitean operators. We may therefore write the physicists’ generators as
Lαβ = iL̃αβ , with

(Lαβ)µ

ν
= iδµ

αgβν − iδµ
βgαν ,

[Lαβ,Lγζ ]
µ

ν
= −igαγ (Lβζ)

µ

ν
+ igβγ (Lαζ)

µ

ν
+ igαζ (Lβγ)

µ

ν
− igζβ (Lαγ)

µ

ν

or as matrices,

[Lαβ,Lγζ ] = −igαγ Lβζ + igβγ Lαζ + igαζ Lβγ − igζβ Lαγ (4)

We will not be needing the L̃αβ any more, so from now on the˜will be
reserved for other meanings.

Because sometimes we think in terms of space and time, and not always
in four dimensions, it is also useful to divide the six generators of the general
Lorentz transformations into three spatial ones2 and the three space-time
ones:

Jℓ =
1

2
ǫℓjkLjk, Kj = L0j.

We can find their commutators from (4), keeping in mind that gij = −δij ,
and noting that Ljk = ǫjkℓJℓ:

[Jj , Jk] =
1

4
ǫjℓmǫkpq [Lℓm,Lpq]

=
i

4
ǫjℓmǫkpq (δℓpLmq − δmpLℓq − δℓqLmp + δmqLℓp)

=
i

4
(ǫjpmǫkpqLmq − ǫjℓpǫkpqLℓq − ǫjℓmǫkpℓLmp + ǫjℓmǫkpmLℓp)

= −
i

4

(

[−δjkδmq + δmkδjq]Lmq + [δjqδℓk − δℓqδjk]Lℓq

+[δmkδjp − δjkδmp]Lmp − [δjkδℓp − δℓkδjp]Lℓp

)

2If you need a refresher (or remediation) on the Levi-Civita tensor ǫijk, please see the
the supplementary note on “ǫijk and Cross Products in 3-D Euclidean space”.
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= −
i

4
(Lkj + Lkj + Lkj + Lkj)

= iLjk = iǫjkℓJℓ. (5)

[Jj , Kk] =
1

2
ǫjpq[Lpq,L0k] =

i

2
ǫjpq (δpkL0q − δqkL0p) = +iǫjkqL0q

[Jj , Kk] = iǫjkqKq. (6)

[Kj , Kk] = [L0j ,L0k] = −iLjk

= −iǫjkℓJℓ. (7)

Eqs. (5) and (6) are the usual commutation relations for the rotation operator

with any vector, [Jj, Vk] = iǫjkℓVℓ. So ~J and ~K rotate as vectors ought to,

under the action of the angular momentum generators ~J . Eq. (7) is something
else however, a somewhat surprising statement that Lorentz boosts do not
commute but rather their commutator is a generator of a rotation. (In 504,
E&M II, we see that this gives rise to the Thomas precession and g = 2 for
the electron.)

The algebra of these six generators is simplified if we consider the complex
linear combinations Lj ± := 1

2
(Jj ± iKj), which satisfy the commutators

[Lj +, Lk +] =
i

4
ǫjkℓ (Jℓ + iKℓ + iKℓ + Jℓ) = iǫjkℓLℓ + ,

[Lj +, Lk−] =
i

4
ǫjkℓ (Jℓ − iKℓ + iKℓ − Jℓ) = 0,

[Lj −, Lk−] =
i

4
ǫjkℓ (Jℓ − iKℓ − iKℓ + Jℓ) = iǫjkℓLℓ− . (8)

Thus we have two sets of mutually commuting generators, so we can find the
possible representations of fields by asking how they transform under each of
the two independant algebras, each of which has the commutation relations
of ordinary rotations, SO(3) or SU(2). We know the finite dimensional rep-
resentations from our quantum mechanics course — they are labelled by a
total spin which is a half integer.

We have discussed the properties of the Lorentz transformations as if they
were simply matrices acting on coordinates, but of course we also have oper-
ators which act on the states of our system, provided for us by the Noether
theorem. These operators need to have the same group properties as matri-
ces do, but to distinguish the more general operators, we will write them in
boldface, Λ,Lαβ ,Jℓ,Kℓ, and Lℓ± being the operator versions of Λ,Lαβ, Jℓ, Kℓ,
and Lℓ± respectively. We need to make this distinction at this point to deal
with translations, which do not act as matrices on the coordinate space.
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1 Including the translations

The full Poincaré group contains, in addition to the Lorentz transformations,
translations T in four dimensions, generated by the 4-momentum operator
Pµ,

T = e−icµPµ : xµ → x′µ = xµ + cµ.

Clearly translations by amounts cµ
1 and cµ

2 commute with each other, so

[Pµ,Pν] = 0.

But the translations do not commute with the Lorentz transformations:
(ΛTx)µ =

(

e−iaℓLℓ

)µ

ν
(xν + cν), while (TΛx)µ =

(

e−iaℓLℓ

)µ

ν
xν + cµ, so

([Λ,T]x)µ =
(

e−iaℓLℓ − 1I
)µ

ν
cν .

As e−icµPµ is the operator which implements T : xµ → x′µ = xµ + cµ, we
have

[

e−iaℓLℓ , e−icµPµ

]

= e
−i
(

e−iaℓLℓ

)µ

ν
cνPµ

− e−icµPµ.

Expanding to first order in aℓ and cν gives

[Lαβ ,Pν] = (Lαβ)µ

ν
Pµ = i(δµ

αgβν − δµ
βgαν)Pµ = −igανPβ + igβνPα.

Thus we have found the commutation relations which define the Lie algebra
of the Poincaré group.

2 Casimir Operators

An operator C constructed from the Lie algebra generators which commutes
with all the generators is called a Casimir operator. One easy example for
the Poincaré group is C1 = P2 := PµPµ, for it obviously commutes with all
Pν , but also

[Lαβ ,C1] = [Lαβ ,Pµ]Pµ + Pµ[Lαβ,Pµ]

= iδµ
αPβPµ − iδµ

βPαPµ + igαµP
µPβ − igβµP

µPα

= i[Pβ,Pα] + i[Pα,Pβ] = 0
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as the P’s commute. Actually, as you will find useful to prove for Homework
#3, question 1 , the Lorentz product of any two vectors W µVµ commutes
with Lαβ , even if W and V do not commute with each other.

A less obvious Casimir operator is the square of the four-vector

Wµ =
1

2
ǫµνρσPνLρσ,

which is known as the Pauli-Lubanski vector. Here ǫµνρσ is the four-dimensional
Minkowski space tensor, defined by being totally antisymmetric under inter-
change of any two indices, with ǫ0123 = 1. In Homework #3, question 1 we
show that W2 also commutes with all the generators of the Poincaré group.

Because any Casimir operator commutes with all the generators of the
group, any irreducible representation has the Casimir operator acting as a
c-number on it. As we have seen, we expect single particle states to lie
in irreducible representations of the Poincaré group, so to have specific
numerical values for P2 and W2.

Of course we recognize P 2 = E2− ~P 2 = m2 as the square of the mass of a
system. What is W 2? This is most easily understood classically by going to
rest frame of the system, where ~P = 0, P 0 = m. As W2 is Lorentz invariant
(it commutes with all Lµν) this is sufficient. Then Wµ = 1

2
m ǫµ0ρσ Lρσ =

1
2
m ǫµ0jk Ljk, which vanishes for µ = 0 and Wℓ = −1

2
m ǫℓjk Ljk = −mJℓ, so

W 2 = −m2J2 = −m2s(s + 1), where s is the quantum number for the total
angular momentum of the system in its rest frame. For a single particle that
is called the spin, and from quantum mechanics we know that s must take
on only half-integer values.

The above argument assumed our state had a positive P 2. We might
wish to exclude from consideration states with P 2 < 0, which are tachyons
moving faster than the speed of light, for which there are at least some
tricky problems in being consistent with causality and relativity, and for
which there is no experimental evidence, despite recent excitement. But we
certainly cannot exclude massless particle states with P 2 = 0. Note that
in general PµW

µ = 0 from the definition of W and the commutation of the
momentum. For massless states which might be the limit of those with mass
without having s → ∞, we will have3 W 2 = 0. Then

WµW
µ |p〉 = WµP

µ |p〉 = PµP
µ |p〉 = 0.

3States with m = 0, W 2 6= 0 do not seem to occur, though I am not sure what would
follow for them.
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The only null vectors whose products with a given non-zero null vector
vanish are those proportional to that vector. To check that, go to the frame
where the given vector is (E, 0, 0,±E). Then the other null vector V has
V0 = ±V3 and has no room for V1 or V2. So Wµ |p〉 = hPµ |p〉 for some
number h, known as the helicity. As W and P both transform as vectors
under proper Lorentz transformations, we expect h to be invariant, and by
examining its value in the reference frame with P µ = (E, 0, 0, E) we see that
the helicity is the angular momentum in the direction of motion,

h = −
~J · ~P

|~P |
.

But ~J is a pseudo-vector, while ~P is a vector, that is, under parity ~x → −~x,
t → +t, ~P changes sign, while ~J does not. So the helicity changes sign under
parity, and if we want a parity-invariant theory, our non-zero helicity states
must occur in pairs, while if we don’t care about parity that is not the case.
We shall see that this is an important issue in neutrino physics.

As we saw earlier, a field that is not a scalar will be part of a collection
φa(x) satisfying U(Λ)φa(x)U−1(Λ) = Mba(Λ)φb(Λx) for some representation
M of the Lorentz group. The books all write this differently,

U(Λ)φa(x)U−1(Λ) = Dab(Λ
−1)φb(Λx), (9)

where D is a representation, but that is equivalent4.
Now, as we have seen, the Lie algebra of the Lorentz transformations can

be broken up into two commuting SU(2) algebras. We know that the finite

4Here are some simple facts about representations:
If M : G → N × N complex matrices is a representation, (so M(g1)M(g2) = M(g1 ◦ g2)),
so are

MC : g 7→ (M(g))∗

MI : g 7→ (M(g−1))T

MH : g 7→ (M(g−1))†

For example,

MI(g1)MI(g2) = (M(g−1
1 ))T(M(g−1

2 ))T = (M(g−1
2 )M(g−1

1 ))T = (M(g−1
2 ◦ g−1

1 ))T

= (M((g1 ◦ g2)
−1))T = MI(g1 ◦ g2).

In particular, by replacing the representation M(g) by D(g) = MI(g) = M(g−1)T, we get
the revised expression (9).
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dimensional representations of SU(2) are labelled by a half integer spin s,
and the two subscript indices are the mz indices which run from −s to s
by unit steps. Each index for the state under Lorentz transformations then
turns into a pair of indices, one for L+ and one for L−. We will call the spin
A for L+ and B for L−, and replace φb by φm1m2

. Rewriting

Λ = e−i~θ · ~J − i~κ · ~K = e−i~θ · (~L+ + ~L−) − ~κ · (~L+ − ~L−)

= e−i~θ+ · ~L+ − i~θ− · ~L−

with
θ+ = θ − iκ, θ− = θ + iκ.

Then

D(m1m2)(m′

1
m′

2
)

(

e+i~θ+ · ~L+ + i~θ− · ~L−

)

= DA
m1m′

1

(

e+i~θ+ · ~L+

)

DB
m2m′

2

(

e+i~θ− · ~L−

)

.

Evaluating U(Λ)φa(x)U−1(Λ) − φa(x) from (9) to first order, we have5

−i
[

~θ · ~J + ~κ · ~K, φm1m2
(x)
]

= DA
m1m′

1

(i~θ+ · ~L+)φm′

1
m2

(10)

+DB
m2m′

2

(i~θ− · ~L−)φm1m′

2
+
(

−i~θ · ~Jµ
ν − i~κ · ~Kµ

ν

)

xν∂µφm1m2
.

Let us first consider the (1
2
, 0) representation, that is, A = 1

2
, B = 0.

Then there are no m2 indices (or rather, there is only one value for it) and
D0 = 1, while

D
1

2 (Li) =
1

2
σi,

the familiar Pauli spin matrix. Thus

[Jℓ, φm(x)] = −
1

2
σℓ mm′φm′ + J µ

ℓ νx
ν∂µφm

= −
1

2
σℓ mm′φm′ − iǫℓjkx

k∂jφm

5We are using the same notation D for the representation of the group elements,
D : g → D(g) for g ∈ G, and for the representation of the generators of infinitesimal
transformations, L ∈ G, where the Lie algebra G is the set of linear combinations of the
basis of generators. Hopefully you have already mastered this possibly confusing notation
in treating the rotation group in quantum mechanics. As the group elements g = eiθℓLℓ

can all be written as exponentials of the Lie algebra elements Lℓ, it is natural to define
D(g) = eiθℓD(Lℓ).
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or
[

~J, φm(x)
]

= −
1

2
~σmm′φm′ + i~x × ~∇φm.

Notice that this is perhaps opposite of what you would expect from non-
relativistic quantum mechanics, as we might have expected

~L = ~r × ~p +
1

2
~σ, (with ~p = −ih̄~∇)

for a spin 1/2 particle. But our expressions for H and P had the same
reversed sign,

[H, φ] = −i
∂

∂t
φ,

[Pj, φ] = +i
∂

∂xj
φ,

which are similarly opposite to H = ih̄∂/∂t and ~p = −ih̄∇ which we are
used to from Quantum Mechanics. This is connected to the reversed φ(Λx)
at the end of Lecture 5.


