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Lecture 5: Sept. 19, 2013

First Applications of Noether’s Theorem

Copyright c©2005 by Joel A. Shapiro

Now it is time to use the very powerful though abstract formalism Noether
developed for continuous symmetries to ask about symmetries we expect our
theories to have. At the very least, in this class, we are going to deal only
with theories which are invariant under

• spatial translations, ~x→ ~x ′ = ~x+ ~c.

• time translations, t → t′ = t + c0, or in four dimensional notation,
x0 → x′ 0 = x0 + c0.

• rotations, xi → x′ i =
∑

j R
i
jx

j , with Ri
j an orthogonal matrix of de-

terminant 1.

• Lorentz boost transformations.

We will also consider internal symmetries.
The first two of these transformations together are four dimensional trans-

lations,
xµ → x′ µ = xµ + cµ, (1)

and the last two (actually Lorentz transformations already include both) can
be written xµ → x′µ =

∑

ν Λµ
νx

ν = Λµ
νx

ν , (using the Einstein summa-
tion convention), where the matrix Λ is a real matrix satisfying the pseudo-
orthogonality condition

Λµ
νgµρΛ

ρ
τ = gντ ,

which is required so that the length of a four-vector is preserved, x′2 :=
x′µx′µ = x2.

All together, this symmetry group is called the inhomogeneous Lorentz
group, or Poincaré group.

1 Translation Invariance

First let us consider translation invariance with Eq. (1) with δxν = ǫcν .
We have here four different generators, with an index ν, each of which has

615: Applic. of Noether’s Thm.Last Latexed: September 18, 2013 at 14:24 2

a conserved four-vector current which is known as the energy-momentum
tensor T ν

µ, with Jµ → cνT µ
ν . We expect all fields to transform as scalars

under translations, so φ′(x′) = φ(x), δφ = 0. For homework you found, for
Klein-Gordon fields, that

T µν = (∂µφi)∂
νφi −Lgµν = (∂µφi)∂

νφi −
1

2
gµν

(

(∂ρφi)∂ρφi −m2φ2
)

.

The conserved charge for translations is the total 4-momentum

P ν(t) =
∫

d3xT 0ν(~x, t),

whose zeroth component is, of course the energy or Hamiltonian, and indeed

H = P 0 =
∫

d3xT 00(~x, t) =
∫

d3x
(

φ̇2 −L
)

=
∫

d3xH,

which encourages us to think, correctly, that T 00 = H in general, and indeed

φ̇2 − L = φ̇2 −
1

2

[

φ̇2 − (∇φ)2 −m2φ2
]

=
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 = H.

From the general expression for P ν in terms of T 0ν and the expression for
the latter in the free Klein Gordon theory, we see that

~P (t) = P j(t) =
∫

d3xT 0j(~x, t) = −
∫

d3x φ̇(~x, t)~∇φ(~x, t),

which verifies the expression we used earlier.
Before we go on to consider our next symmetry, I want to say a few words

about T µν . This tensor density is called the energy-momentum tensor or the
stress-energy tensor. As we have seen, T 00 is the energy density and T 0j

is the density of the j’th component of momentum. But T jµ also has an
interpretation, as the flux through a surface perpendicular to the j direction.
T j0 is the flux of energy, and T ji is the flux of i’th component of momentum.

The energy momentum tensor plays a crucial role in general relativity,
where Einstein’s equation:

Rµν −
1

2
gµνR = −8πGTµν ,

gives the coupling of the curvature of space-time, of which Rµν is a piece, to
the energy-momentum Tµν of matter (including photons). In this equation
gµν is not the fixed matrix we are using to describe flat space in the absence
of gravity, but rather dynamical degrees of freedom, and R = gµνRµν . This
equation shows that in relativistic gravity, it is the energy-momentum tensor,
and not the mass, that determines the coupling of matter to gravity.
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2 Internal Symmetries

Let us again consider that we might have more than one scalar field, with
a Lagrangian density

∑

i(
1
2
∂µφi∂

µφi −
1
2
m2

iφ
2
i ). In our noninteracting theory

there is no coupling between these, so the expression for the canonical mo-
mentum and the creation and annihilation operators apply for each i, and
the expressions for H, ~P and T µν are all just sums over i of what we have
derived before. One new issue is the possibility of an internal symmetry.
If the masses mi are all the same (or if we consider a subset of the i for
which they are the same), the sum over i becomes a dot product in an ab-
stract vector space, with dimension N given by the number of independent
φ fields. Then we would expect that there is a symmetry under rotations:
φi(~x, t) → φ′

i(~x, t) = Oijφj(~x, t), where O is an orthogonal N × N matrix.
Here our symmetry involves no variation in the coordinates xµ, and so we
are talking about an internal symmetry. The condition for orthogonality is
that the elements are real and that the length of dot products is unchanged,
A ·B = AiBi = (OA) · (OB) = OijAjOikBk, for all A and B, which requires
OijOik = δjk, or OTO = 1I.

Orthogonal matrices in N dimensions form a group1 called O(N). From
the determinant of OTO = 1I we see that detO = ±1. The subset of O(N)
with detO = 1 is called SO(N) and forms a continuous, or Lie, group, with
N(N − 1)/2 generators Lℓ which are antisymmetric real matrices. Thus
each element2 g of SO(N) can thus be written as3 g = eaℓLℓ for some set of
N(N − 1)/2 real numbers aℓ.

For each ℓ there is a Noether current Jµ
ℓ . For homework you found the

1A group G is a set of elements g1, g2, . . . together with a “multiplication rule”, ◦,
with the properties that 1) the group is closed under multiplication (g1 ◦ g2 ∈ G); 2) ◦ is
associative: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3); 3) there is an identity element 1I with g ◦ 1I = g

for all g ∈ G; 4) for every g ∈ G there is an inverse element g−1 with g ◦ g−1 = 1I.
For physicists, the elements are (almost?) always transformations and the multiplication
is composition, that is, sequential application. The identity element is the “do-nothing”
transformation. As should be familiar from the rotation group, symmetry transformations
do not always commute, so the multiplication rule is not necessarily commutative, g1 ◦ g2

may not equal g2 ◦ g1. Composition is automatically associative.
2Elements of O(N) which have determinant −1 cannot be reached by a continuous

path starting from the identity, which has determinant +1, and so cannot be written in
this fashion.

3Summation over ℓ understood, of course. Physicists usually write g = e−iaℓLℓ with
hermitean generators Lℓ, which for O(N) would be imaginary.
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expressions for these currents and their conserved charges.
What does the existence of a symmetry tell us? If Λ is a symmetry

transformation and |ψ〉 an arbitrary state of the system, the transformation
will take us to another state U(Λ) |ψ〉

|ψ〉 −→
Λ

U(Λ) |ψ〉 .

That it goes into some state is certain, with probability 1, so U(Λ) must
preserve the normalization, and U(Λ) is therefore a unitary operator on the
set of all possible states of the system. If O is some operator, perhaps φ(x)
or π(x) or H(x), that can act on the states of the system, the state it forms
acting on |ψ〉 is also transformed under the symmetry

O |ψ〉 −→
Λ

U(Λ)O |ψ〉 = U(Λ)OU−1(Λ)U(Λ) |ψ〉 ,

so we can see that the effect of the symmetry on the operator itself is

O −→
Λ

U(Λ)OU−1(Λ).

In classical physics, if φ(~x, t) is a solution of the equations of motion, and
Λ : φ 7→ φ′ is a symmetry, then φ′ will also be a solution of the equations of
motion. Quantum mechanically, the transition amplitude 〈ψ2, t2||ψ1, t1〉 must
be the same as that between the transformed states4 〈U(Λ)ψ2, t2||U(Λ)ψ1, t1〉.
In particular, states are transformed into states with the same energy. In our
theory here, but also for sufficiently unperturbed interacting theories, that
means that single particle states are transformed into other single particle
states. Thus the set of single particle states form a representation5.

The theory of representations of groups is a well developed subject, done
by mathematicians but studied principally by physicists in courses such as
618. The states which correspond to our fields φi transform according to
the fundamental N -dimensional representation. For a noninteracting theory
this doesn’t teach us much that isn’t already obvious, but we can imagine

4I will only consider transformations which leave time invariant in this statement. Also,
I am being careless about phases here.

5To a mathematician, a representation is a map from the group into the set of N × N

matrices, g 7→ M(g), with the property that for all g, g′ ∈ G, M(g ◦ g′) = M(g)M(g′).
Physicists usually call the N dimensional vector space on which these matrices act the
representation, but mathematicians rarely talk about that space, and when they do, they
call it a module.
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that when we add interactions there may be a coupling to other particles or
bound states of these particles. Whatever states there are, they will have to
transform according to some representation of the symmetry group6. Thus,
for example, we cannot have a multiplet of two real scalars if the symmetry
group is SO(3).

3 Representations

It is easy to get confused by the duality between active and passive views of
symmetries, and between representations and their adjoints, so let’s spell out
things more carefully. Suppose we have a group G of symmetry transforma-
tions and a set of quantum states closed under the action of these symmetries,
which will act as linear operators. Let |ψi〉 be a basis (orthonormal) for these
states. Under the action of a symmetry g, each state is transformed into a
linear combination of these basis elements, so for each i,

U(g) |ψi〉 =
∑

j

Mji(g) |ψj〉 .

You may ask why we have written the matrix with the sum on the first
index. First, this is required for the product of two transformations to work
correctly:

U(g1)U(g2) |φi〉 = U(g1)





∑

j

Mji(g2) |φj〉





=
∑

j

Mji(g2)U(g1) |φj〉

=
∑

j

Mji(g2)
∑

k

Mkj(g1) |φk〉

= U(g1g2) |φi〉 =
∑

k

Mki(g1g2) |φk〉 ,

where on the second line we noted that the matrix elements M are just
c-numbers and so commute with all operators. The last line requires only

6Unless there is some form of symmetry breaking, the symmetry group is the group
of symmetries of the action, as we discussed above. There are, however, theories with
spontaneous symmetry breakdown, which we will discuss later on. In this case, it is only
representations of the unbroken subgroup that describe the states of the system.
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that

Mki(g1g2) =
∑

j

Mkj(g1)Mji(g2) or M(g1g2) = M(g1)M(g2),

which is the definition of a representation.
Second, an arbitrary state in the subspace |ψ〉 =

∑

j aj |ψj〉 then gets
transformed by

|ψ〉 → U(g) |ψ〉 =
∑

j

aj

∑

k

Mkj |ψk〉 =
∑

k

a′k |ψk〉 ,

so we have for the coefficients

a→ a′ with a′k =
∑

j

Mkjaj ,

and the matrix acts on the coefficients as you might expect, with the sum on
the second index.

To repeat: A map from a group G into the set of N × N matrices M :
g 7→M(g) which has the property that

for all g1 and g2 in G, M(g1g2) = M(g1)M(g2)

is called a representation of G. Physicists generally use that word to describe
the vector space acted on by the matrices, but mathematicians mean the
matrices themselves.

A representation is unitary if every group element is represented by a
unitary matrix. A group which is compact7 has all its finite dimensional
irreducible8 representations equivalent to a unitary one, and that is what
we will always deal with. But for a noncompact semi-simple9 group, there
are no finite-dimensional unitary faithful10 representations. For an Abelian

7Roughly, this means that the parameter space of the group is a compact set, as for
example the set of rotations in three dimensions, which can be specified by a rotation
vector of length at most π. The set of translations or of Lorentz transformations, however,
is not compact.

8A representation is reducible if there is a proper subspace of the module which is
mapped only into itself under the actions of all elements of the group. For the groups
and representations we will consider, all representations can be written as a direct sum of
irreducible representations.

9A group is semi-simple if there is no Abelian subgroup A which is invariant. A
subgroup A is invariant if gag−1 ∈ A for all g ∈ G and a ∈ A

10g 7→ 1 only for g = 1.
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group, for which all of the elements commute with each other, all irreducible
representations are one-dimensional. The only non-compact groups we will
discuss are the translation and Lorentz/Poincaré groups, while compact in-
ternal symmetry groups, especially SU(3), will play a big role.

For the translations, of course, the group is Abelian, so the irreducible
representations of the translation group are each a single state |pµ, α〉, where
α represents all other properties of the state, which are necessarily invariant
under translations. Then under a translation xµ → xµ + cµ the state is
multiplied by a phase

|pµ, α〉 → e−icµPµ |pµ, α〉 = e−icµpµ |pµ, α〉 .

With U(Tc) = e−icµPµ, this says

U(Tc)a
†
~p,α |0〉 = e−icµpµa†~p,α |0〉 = e−icµpµa†~p,αU(Tc) |0〉 ,

which suggests
U(Tc)a

†
~p,αU

−1(Tc) = e−icµpµa†~p,α,

and differentiating with respect to cµ at c = 0 gives

i[Pµ, a
†
~p,α] = ipµa

†
~p,α,

which we have previously verified for the scalar field.
These momentum eigenstates are not individually representations of the

Poincaré group, however, because rotations or Lorentz transformations con-
vert a state of one momentum pµ into a state with another. Thus we expect
that under a Lorentz transformation xµ → Λµ

νx
µ we should have

|pµ, a, α〉 → U(Λ) |pµ, a, α〉 =
∑

p′,b

M(p′,b),(p,a)(Λ) |p′µ, b, α〉 ,

where I have divided the extra properties into those left invariant under
Lorentz transformations (α) and those which get mixed, (a, b), like the Lz

quantum number m for rotations of a particle at rest. But in fact only one
p′ should enter for a fixed Lorentz transformation on a fixed pµ, namely
p′µ = Λµ

νp
ν . So the matrix M need have only the discrete indices (a, b), but

it can depend on the momentum of the state it acts on:

|pµ, a, α〉 → U(Λ) |pµ, a, α〉 =
∑

b

Mb,a(Λ, p
µ)

∣

∣

∣Λµ
νp

ν , b, α
〉

.
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This is rather messy, so let’s look first at scalar particles, for which the
matrix M is just 1. Let’s also suppress the α index Then

U(Λ) |pµ〉 =
∣

∣

∣Λµ
νp

ν
〉

= |p′µ〉

which means that, at least acting on the vacuum,

U(Λ)
√

2Ep a
†
~p U

−1(Λ) =
√

2Λ0
νp

ν a†
Λj

ν
pν
.

Taking the hermitean conjugate of this,

U(Λ)
√

2Ep a~p U
−1(Λ) =

√

2Λ0
νp

ν aΛj
ν
pν .

and thus for a scalar field11

φ(xµ) =
∫ d4p

(2π)3
δ(p2 −m2)Θ(p0)

√

2p0
(

a~p e
−ipµxµ

+ a†~p e
ipµxµ

)

,

U(Λ) φ(xµ) U−1(Λ) =
∫

d4p

(2π)3
δ(p2 −m2)Θ(p0)U(Λ)

√

2Ep

(

a~p e
−ipµxµ

+ a†~p e
ipµxµ

)

U−1(Λ)

=
∫

d4p

(2π)3
δ(p2 −m2)Θ(p0)

√

2Ep′

(

a~p ′e−ipµxµ

+ a†~p ′eipµxµ
)

=
∫ d4p′

(2π)3
δ(p′ 2 −m2)Θ(p′0)

√

2Ep′

(

a~p ′e−ip′µx′ µ

+ a†~p ′eip′µx′µ
)

= φ(x′µ),

where I have used the Lorentz invariance of the integration measure
∫

d4p δ(p2 −m2)Θ(p0), defined x′µ = Λµ
νx

ν , and used the Lorentz invariance

to replace eipµxµ

= eip′µx′µ

. Thus we see that for a scalar field

U(Λ)φ(xµ)U−1(Λ) = φ(Λµ
νx

ν).

This is a bit surprizing, and looks backwards from our classical statement
φ→ φ′ where φ′(Λx) = φ(x), or φ′(x) = φ(Λ−1(x)). An explanation, sort of,
is on pages 59-60 of the book, pointing out that earlier we were considering

11Combining PS 2.25 and 2.40.
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a fixed field configuration and defining a new field in new coordinates with
the same physics as the old field. This is a passive view of what a Lorentz
transformation means. Here we are taking an operator that creates a particle
at one point and rotating it so that it creates a particle at a transformed point,
an active view of the Lorentz transformation. These are effectively inverses
of each other. It is essential not to think that U(Λ)φ(x)U−1(Λ) is φ′(x) or
φ′(Λx), neither of which is true.


