Some Comments on P&S treatment of BRST

Below 16.49

That Q^2 vanishes on B and on \overline{c} is trivial, the first killed by the first Q and the second converted by the first Q into a B and then killed by the second Q. For the fermion field

$$\begin{split} Q^{2}\psi &= Q(igc^{a}t^{a}\psi) &= igQ(c^{a})t^{a}\psi - igc^{a}t^{a}Q(\psi) \\ &= ig\left\{-\frac{1}{2}gf^{abc}c^{b}c^{c}t^{a}\psi - igc^{a}t^{a}c^{b}t^{b}\psi\right\} \\ &= -\frac{1}{2}g^{2}\left\{if^{abc}c^{b}c^{c}t^{a}\psi - c^{a}c^{b}\left[t^{a},t^{b}\right]\psi\right\} \\ &= -\frac{1}{2}g^{2}\left\{if^{abc}c^{b}c^{c}t^{a}\psi - if^{abc}c^{a}c^{b}t^{c}\psi\right\} = 0. \end{split}$$

It is important to notice in the first line, that when the anticommuting Q passes through the grassman c^a , we pick up a minus sign. (I missed that in lecture).

On the Subspaces

We saw that Q is nilpotent (which means there is some integer n > 0 such that $Q^n \equiv 0$), in particular $Q^2 \equiv 0$. Let \mathcal{H} be the full set of states of the theory, including ghosts and longitudinal photons and the like. Let \mathcal{H}_3 be the kernal of Q, that is, all states $|\psi_3\rangle$ in \mathcal{H} for which $Q |\psi_3\rangle = 0$. Let $\mathcal{H}_2 = Q\mathcal{H}$, that is, all states which are Q of something. As $Q^2 = 0$, all states in \mathcal{H}_2 are killed by Q and thus in \mathcal{H}_3 , so $\mathcal{H}_2 \subset \mathcal{H}_3$. Let $\mathcal{H}_0 = \mathcal{H}_3/\mathcal{H}_2$ the coset space. Thus a state in \mathcal{H}_0 is a state annihilated by Q modulo states which are Q of something. This is the cohomology of Q. It is also the set of physical states.

My objection to what P&S say is that their \mathcal{H}_1 is not really a vector space (it doesn't contain 0, for instance).