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Physics 613 Lecture 18 April 8, 2014

Renormalizability
Copyright c©2014 by Joel A. Shapiro

We saw in our oversimplified ABC theory that the only divergence was
in the one-loop self energy. In general a loop will have a number of prop-
agators, each of which gives, for scalars, two powers of momentum in the
denominator, so if there are more than two, the

∫

d4k will not diverge. Also,
as the vertex has only three propagators, such a loop cannot be part of an
overlapping divergence, except for the irrelevant vacuum bubble in Fig. 6.3a.
But the Dirac propagator has only one power of momentum in the denomi-
nator, so there may be, and are, divergences also in loops with three or four
propagators.

One way to understand whether we can have divergences in a theory is
to observe that the invariant amplitude with n external particles is supposed
to have dimension 4 − n (energy4−n), as one can see from the formula for
the cross section 6.110 with 6.111. The Lagrangian density has dimension 4
(energy4) (in four-dimensions) and the scalar and vector fields have dimension
1, and the Dirac fields dimension 3/2. This means the parameters that enter
the lagrangian have definite dimensions, 1 for m, 1 for g of any φ3 coupling,
0 for e of eψ̄γµψAµ and for λ of λφ4. Note that all of these have non-negative
dimensions. Any counterterms in the Lagrangian will be a function of the
coupling constants or parameters of the Lagrangian, multiplying fields and
the total dimension must be four. As all the fields have positive dimensions,
if all parameters have non-negative dimension, only a few combinations of
fields can appear.

Consider a Feynman diagram withB external bosons, F external fermions,
NB internal boson propagators, NF internal fermion propagators, Ng φ

3 ver-
tices, Nλ φ

4 vertices, Nm mass insertions, Nψ couplings of ψ̄Γψ to bosons,
and NL loop integrals. The “superficial degree of divergence” is just power
counting in the internal momenta, 4NL − 2NB −NF , which will indicate an
ultraviolet divergence if it is ≥ 0 (a logarithmic divergence if 0).

But the number of ends of propagators plus external particles of each
type must correspond to the number of attachment points on the vertices for
that type, so

B + 2NB = 2Nm + 3Ng + 4Nλ +Nψ (1)

F + 2NF = 2Nψ (2)
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There are 4D-momenta for each propagator, with one 4D constraint for each
vertex, except for one giving overall momentum conservation, so the number
of unconstrained momenta (the number of loops) is

NL = NB +NF −Nm −Ng −Nλ −Nψ + 1.

Thus the superficial degree of divergence is

4NL−2NB−NF = 4+4NB+4NF−4Nm−4Ng−4Nλ−4Nψ−2NB−NF

= 4+ (2Nm+3Ng+4Nλ+Nψ−B) +
3

2
(2Nψ−F )

−4Nm−4Ng−4Nλ−4Nψ

= 4 − 2Nm −Ng − B − 3

2
F

Notice that this corresponds to just 4−∑

(dimensions of constants plus ex-
ternal fields). Thus we can only have divergences with four or fewer external
bosons, or two fermions and up to one boson.

Now if we had vertices with higher powers of the fields, they would enter
the ends-counting equations ([1] and [2]) with higher coefficients and would
give positive contributions to the degree of divergence, so there would be di-
vergent diagrams with arbitrary numbers of external particles. Each of these
would need an arbitrary counterterm and the theory would have no predictive
power. Such theories are called non-renormalizable. But as long as all the
coupling constants have non-negative dimensions, the counterterms are lim-
ited to those listed, 2, 3, and 4 boson vertices, and fermion-antifermion-boson
and fermion mass counterterms. So these are renormalizable theories. [Note:
this depends on our living in 4 dimensions. In three space-time dimensions
φ6 would be renormalizable.]

In the discussion above, we assumed the vector propagator behaved like
momentum−2, which is OK if we can use −gµν/q2. That depended on gauge
invariance and the Ward identity. We might ask what would happen if we
had a field theory with massive vector particles. The field Bµ represents a free
particle obeying ( +m2)Bµ = 0 with a constraint that says in its rest frame,
Bµ is a spin=1 with no timelike component. That is, ∂µB

µ = 0. Thus the
equation of motion is really ∂µ∂µB

ν−∂ν∂µBµ+m2Bν = 0. In taking ∂ν of this
equation, the first two terms cancel, and this implies ∂µB

µ = 0, but having
established that, the second term vanishes and we get the Klein-Gordon
equation. In momentum space, this equation is [−(k2−m2)gµν+kµkν ]B̃

ν = 0.
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The propagator needs to be i times the inverse of −(k2−m2)gµν+kµkν , which
is

Dµν
F =

−gµν + kµkν/m2

k2 −m2
.

But notice that this propagator does not behave like k−2 in the ultraviolet
(at large k), and does not help Feynman diagrams to converge. Without
the −2NB the bosonic propagators gave in the degree-of-divergence formula,
there is no limit on how many external particles, as well as on coupling
constants and loops, that can diverge. So a field theory which starts off
with massive spin-1 particles is non-renormalizable. We will see later that
there is a way around this, by starting with zero mass vector particles but
introducing spontaneous symmetry breaking.

Quantum Electrodynamics

The quantum field theory that really established its pertinence in real physics
was QED, Quantum Electrodynamics, with a lagrangian

L = ψ̄0(i 6∂ −m0)ψ0 − e0ψ̄0γ
µψ0A0µ −

1

4
F0µνF

µν
0 − 1

2ξ0
(∂µA

µ
0 )

2
,

where we have subscripted all the parameters and fields with 0 to indicate
that they are not the renormalized (or “physical”) values. To get a theory
in which each new order in perturbation theory makes a small, rather than
infinite, change from the previous order, we reexpress these “bare” fields and
parameters in terms of the renormalized ones, which we now write without
a ph subscript. The renormalized fields are

ψ = Z
−1/2
2 ψ0, Aµ = Z

−1/2
3 Aµ0

and the lagrangian becomes L = L0 + LI , with

L0 = ψ̄(i 6∂ −m)ψ −−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 , (3)

LI = −eψ̄γµψAµ (4)

+i(Z2−1)ψ̄ 6∂ψ−δmψ̄ψ−1

4
(Z3−1)FµνF

µν−(Z1−1)eψ̄γµψAµ.(5)

We now do the interaction picture using (3) as the bare lagrangian and now
have interactions of the original type (4) and counterterms (5). We need
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an agreement on how the parameters of the lagrangian are split into “phys-
ical” ones and counterterms, and this will be by imposing renormalization
conditions.

One of the renormalization conditions is that the “physical mass” is in-
deed what one measures for a single particle. When we calcuate the electron
self-energy to a new order n, we use the physics mass and the physical charge,
and then determine the new contribution O(en) to Z2 and δm to keep the pole
and residue in D̃′

F at the physical mass with weight 1. One must also calcu-
late the renormalization of the photon propagator, giving Z3. It is the magic
of gauge invariance that the photon propagator does not develop a mass
shift, which has to do with the fact (assumption?) that there is no massless
particle with the photon’s quantum numbers. This will prove a crucial pro-
viso when we consider gauge fields with spontaneously broken symmetries.
It preserves the Ward identities. Finally, there is the renormalization of the
fermion vertex, and Z1, fixed to keep the physical charge of the electron at
its measured value, with Z1e = e0Z2

√
Z3.

Notice that for the electron derivative terms and the photon coupling to
combine into the covariant derivative, it is necessary that Z1 = Z2, and in
fact this is also due to the Ward identity.

The actual calculation of these one-loop graphs in QED is complicated
by several issues. One is the masslessness of the photon, which gives rise to
infrared divergences. Because a photon can carry off arbitrarily little energy
and momentum, any scattering of a charged particle has zero probability of
not emitting any photons. But our S matrix elements were defined in terms
of precisely specified final states, and this leads to divergences in calculating
the amplitude for that. It can be understood by placing a lower limit on the
energies of the photons guaranteed not to be present in the final state (a kind
of inclusive cross section). The other complications have to due with assuring
the Ward identity is preserved. I am not going to discuss these issued further
— you have seen it in 615 or may do so in the future. Instead, we will begin
our discussion on non-Abelian symmetries.

Non-Abelian Symmetry

In the first two lectures this term, we discussed how crucial symmetries are
in high energy theory. We have discussed both global symmetries, in which
a symmetry transformation fixed by a finite number of parameters is applied
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to the fields at all space-time points, and local symmetry, in which the pa-
rameters are allowed to vary from point to point in space-time. Examples of
global symmetry include both Poincaré invariance and isotopic spin or SU(3)
flavor symmetries. Thus far the only local symmetry we have encountered is
the phase invariance of charge fields coupled by convariant derivatives to elec-
tromagnetism. Phase transformations, ψ → eiθψ form a very simple group,
translations modulo 2π or equivalently, rotations in a plane, SO(2). But we
know from rotations, isorotations, and flavor SU(3) that global symmetries
can be considerably bigger and more complicated. Especially important is
that the elements of the group do not commute — for example, the effect
of two rotations about different axes depend on the order the two rotations
are performed. Groups for which all elements commute are called Abelian,
otherwise they are non-Abelian.

Groups can be finite, that is, have a finite number of elements, like the
group of rotations that leave a cube invariant, which has 24 elements, or, if
we include reflections, 48 elements. Or it can be infinite. If infinite, it can be
discrete, such as the group of addition by integers, or it can be continuous,
with real parameters, as in addition by reals or unrestricted rotations. In
the case of continuous groups, one can generally1 specify all that one needs
in terms of the infinitesimal generators, as we do for rotations using the
angular momenta Lx, Ly and Lz, in terms of which an arbitrary rotation can

be written R = ei~ω·
~L, with ~ω a 3-vector of real numbers.

For a global symmetry, if we have a physically allowed state of the system,
and we apply a symmetry group transformation, the resultant state must
also be a physically allowable state. That means states of the system form
representations of the group. We are used to this from atomic states in
quantum mechanics, where the three n = 2, ℓ = 1 states of a hydrogen
atom (ignoring spin) transform into each other under rotations. Given a
particular state, not every state of the system is a group transformation of
that state, of course. If we start with |n = 2, ℓ = 1, m = 0〉 we can get to
any state with n = 2, ℓ = 1, which is a three-dimensional space, but not to
any of the states with different n or ℓ. We say that this three-dimensional

1Not quite. For example, the group of rotations SO(3) and the group of special unitary
matrices in two dimensions, SU(2), have the same generators, with the same commutation
relations. But a rotation through 2π returns one to the identity, while e

2πiLz in SU(2) gives
−1I. Perhaps more importantly, SO(2) and addition of reals each have a single generator,
but the parameters multiplying it take on a finite domain for SO(2), but infinite for
addition of reals.
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space is an irreducible representation of SO(3). The way the states within
a representation transform into each other is completely specified by the
representation, so one doesn’t need to know the detailed physical state. We
saw in Lecture 2 how this enabled us to make statements of the scattering
amplitudes of various pions off nucleons without knowing any details of the
hadronic interaction, other than that when the particles are far apart they
transform independently.

In that discussion, we made use of the fact that a state which consists of
two independent parts, like the two particles well before collision, transforms
like the product of the way the parts transform under finite transformations.
The direct product of two irreducible representations can be decomposed into
a sum of irreducible representations, and the way each state in the combined
representation depends on the component states is given by what physicists
call Clebsch-Gordon coefficients2. As the Hamiltonian or Lagrange density
should be invariant under the symmetry, a term which is a product of fields
must be a combination which is the identity representation, M(g) = 1 for all
g ∈ G. We have already seen this for Lorentz invariance (and of course spin)
as ψ̄γµψAνgµν is invariant because the (γ0γµ)ab are essentially a Clebsch-
Gordon coefficients for combining a Dirac representation ψb and its conjugate
ψ̄a into a contravariant vector representation, and gµν are Clebsch-Gordon
coefficients for combining two contravariant vector representations into the
identity.

For a Lie group the group transformations are exponentials of symmetry
generators, and so for the direct product of representations, the generators
act as the direct sum. If you saw the derivation of Clebsch-Gordon coefficients
for SO(3) in quantum mechanics class, you used this fact.

SU(3)flavor

Let us return to the approximate symmetry that we could have if the three
lighter quarks, u, d, and s are considered to be components of a complex 3-
vector in flavor space, and the theory is as symmetric as possible. That would
mean that the three quark fields qj(x) = u(x), d(x), s(x) could be replaced by

2Some mathematicians disagree — they say the Clebsch Gordon coefficients are the
number of times a representation J occurs in the direct product J1 ⊗ J2, so for SU(2) it
is always either 0 or 1, but for larger groups a given representation may occur more than
once, e.g. for SU(3) 8⊗ 8 = 27 + 10 + 1̄0 + 8 + 8 + 1. But the physicist’s definition has
taken over, at least at Wikipedia.



613: Lecture 18 Last Latexed: April 11, 2014 at 14:18 7

q′j =
∑

kWjkqk and the lagrangian would be unchanged. But there is surely
a term q̄jγ

µ∂µqj in the lagrangian, which means that, assuming W is global
with no xµ dependence, and is a Lorentz scalar, that W †W = 1I, so W must
be a unitary 3 × 3 complex matrix. So we might have a U(3) symmetry of
our quark theory.

Actually, the group U(3) can be split into SU(3), which are unitary matri-
ces with determinant 1, and U(1)=SO(2) which consists of eiθ times the 3×3
unit matrix. As the latter matrices commute with all the SU(3) matrices,
the group U(3) can be treated as two commuting, independent groups. Each
symmetry, of course, generates a conserved charge, and the U(1) charge is
baryon number B.

Any unitary matrix can be written as U = eiH with a hermitean matrixH ,
and detU = exp(iTrH), so the generators of SU(3) are traceless hermitean
3×3 matrices. There are thus 8 independent generators (if you like, 3 complex
numbers above the diagonal, and two for the diagonal with the tracelessness
constraint). Thus the generators of SU(3) form an 8 dimensional vector space
called the Lie algebra. We may define a standard basis λa of these, analogous
to the three Pauli spin matrices σj . In fact, the first three λ’s are the Pauli
matrices with zeros in the last row and column. The most important other

one is λ8 = 1√
3







1 0 0
0 1 0
0 0 −2





. The generators are taken to be Tj = λj/2,

and satisfy Tr(TaTb) = δab/2, with [Ta, Tb] = ifabcTc defining the structure

constants fabc of the Lie algebra.
There are 8 conserved quantities from the SU(3) symmetry, but as they

do not commute, only two can be simultaneously diagonalized. This is the
analog of Lz for SO(3). For SU(3), these are T3 and T8, but we usually use
hypercharge Y = 1√

3
λ8, so the u and d quarks have Y = 1/3, and the s quark

Y = −2/3. S = Y − B is the strangeness.
The quarks form a three dimensional representation known as 3, and

the antiquarks form a different three dimensional representation 3̄. You can
tell they are not the same because the hypercharges are reversed, which
is different from what happens for SU(2), where the antidoublet is equiva-
lent to the doublet. So q̄ transforms as the antiquark, and the combination
(q̄)j(λa)jkqk transforms like an octet, that is, just like the generators of the
group. If we have vector bosons which also transform like the generators,
−igsq̄j(λa)jkγµqkAµa is invariant under flavor SU(3). But this is not what
we really have, because the gluons Aµa transform under color SU(3), and are
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flavor singlets. But, as we shall see, the quarks are not only a triplet under
flavor, but also a triplet under color, and the above term should really be
replaced by

−igs
∑

f

q̄
(f)
j (λa)jkγµq

(f)
k Aµa

where q
(f)
k is a quark of flavor f = u, d, s and color j, k = blue, green, or red.


