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Physics 613 Lecture 17 April 3, 2014

Renormalization
Copyright c©2014 by Joel A. Shapiro

Last time we began our discussion of feynman graphs containing loops,
and therefore some propagators with momentum not fixed by the external
momenta and momentum conservation. In particular, we found self-energy
corrections could occur on propagators or external lines.
We defined ΠC(q2) to be the sum of all one-particle-
irreducible (1PI) graphs that could fit between two bare
propagators D̃F (q, mC), and then we saw that the sum
of all connected 2-point graphs gave
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ZC is known as the field-strength renormalization.
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Vertex Corrections

Another diagram which enters the O(g4) calcu-
lation of AB scattering is the vertex correction
diagram. This will give a contribution of the form
−ig i

q2
−m2

C

(

−igG[2](pA, p′B)
)

where G(pA, p′B) can

be viewed as the sum of all graphs connectable
to three propagators, and thus a generalization of
the vertex, with G[0] = 1, and our diagram the

p

q

k
p

B’A

O(g2) contribution1 to an infinite power series expansion. As these inser-
tions will occur whereever a vertex can, any attempt to measure the value
of g will have these corrections included. This will be more interesting to
discuss in a real process such as the charge in QED, but for now we will just
comment that the physical charge will not be the value g in the Lagrangian
but instead a corrected gph. The recognition that the physical values of the
mass and coupling constants are modified from the values of the correspond-
ing parameters in the Lagrangian is called renormalization. The unpleasant
reality that this renormalization is infinite requires us to introduce artificial
cutoffs to make the renormalization finite and well-determined. This is called
regularization. Then, because we don’t really care about or have any way
of observing the parameters in the Lagrangian, if we can remove the cutoffs
while leaving the physical parameters fixed, we have a well-defined theory.

Calculation of Π[2]

Let us return to the evaluation of

Π[2](q2) = −ig2
∫

d4k

(2π)4

i

k2 − m2
A + iǫ

i

(q − k)2 − m2
B + iǫ

.

The four-dimensional integral is complicated by the two denominators —
were there only one denominator, we could use Lorentz invariance to elim-
inate the angular dependence. In fact, we would first deform the contour
integral in k0 from the real axis to the imaginary axis, taking it away from
the poles, and, setting k0 = ikE kj = kj

E , we are now integrating Euclidean

d4kµ
E, and the denominator is −((k0

E)2 + ~k 2
e + m2) = −(k2

E + m2) which has
no chance of vanishing (if m 6= 0). Also, the integrand would then by hyper-
spherically symmetric, so the angular integral would just give the volume of

1I would have called these G[1] = −ig and G[3] respectively, but, Oh well.
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a 3-sphere, that is, the volume of the surface of a four dimensional ball of
radius k, which is2 2π2k3. But with multiple denominators, the symmetry
around k = 0 is disturbed by the (q − k)2 term. For any loop that doesn’t
overlap with other loops, we have a single four-dimensional integral over mo-
mentum but a product of denominators with (k − pj)

2 terms, which appears
very difficult. But there is a trick, due to Feynman or Schwinger3 which tells
us4 that
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We have two denominators, N = 2, and if we let x = α2, this reads
1

AB
=

dx
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, and

−iΠ[2](q2) = g2
∫ 1
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where k′ = k − xq and ∆(q2, x) = −x(1 − x)q2 − xm2
B − (1 − x)m2

A.

Now, for a fixed value of x and ~k ′, the inte-

gral dk′ 0 has poles at dk′ 0 = ±
√

(~k ′)2 + ∆ − iǫ,
and at least for spacelike q, these are just off
the real axis in the same way as we had for the
propagator in lecture 9. So we can deform the
dk′ contour so that it runs up the imaginary axis,
call its imaginary part k′

E, and observe that the
integral is now
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The

k′ 2
E is now a Euclean four-vector squared, and we have no angular dependence,

2See http://www.physics.rutgers.edu/grad/615/lects/gammanSn.pdf.
3For a bit of petulance about this, see Schwinger, “Particles, Sources, and Fields”, p.

338.
4See http://www.physics.rutgers.edu/grad/615/lects/schwingertrick.pdf.
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so

−iΠ[2](q2) = ig2
∫ 1

0
dx
∫

∞
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2π2k3 dk
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k3 dk
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.

In the book, this integral was done differently, and they get an appar-

ently different answer as Eq. 10.50, which has
∫

∞

0

u2du

(u2 + ∆)3/2
instead of

∫

∞

0

k3 dk

(k2 + ∆)2
. Whether they are the same is a dubious question, because

neither integral is well defined. In fact, I have been negligent in throwing
away the two quarter-circles at infinity, which would have added the constant
ig2/16π3. The difference is independent of q2, because if we differentiate the
two expressions with respect to ∆ (which is where the q2 dependence en-
ters), we get no contribution from the arcs at infinity, and indeed the two
expressions give the same expression. In fact, the derivative can be explicitly
evaluated5,

∫
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0
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= − 1

2∆
,

which means that

Π[2](q2) = C +
g2

16π2

∫ 1

0
dx ln(−x(1 − x)q2 + xm2

B + (1 − x)m2
A),

where C is independent of q2, so although it is infinite, it is also irrelevant.
The field-strength renormalization is

ZC ≈ 1+
dΠ
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As the denominator takes on its minimum value for x =
1

2
+

m2
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B

2mC2
at

which it takes the value

−m4
C + m4

A + m4
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(mA+mB−mC) (mA−mB+mC) (−mA+mB+mC) ,

5This provides an instructive example of how one must be careful in manipulating ill-
defined objects. If one looks at either of the integrals above, either mine or the book’s,
and scales the integration variable k =

√
∆v or u =

√
∆v, one finds the integrals are

independent of ∆, but here we see that it has a non-zero derivative.
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which we see vanishes whenever and only whenever two of the masses add
up to the third. So as long as each particle is stable against decay into the
two others, the denominator does not vanish, the integral is finite, and the
field-strength renormalization is finite (and order g2).

Counterterms

Our ABC theory is considerably simpler than the actual field theories we
need to discuss high energy theory. What we have seen here is due to
its super-renormalizable nature. The only infinity si the displacement of
the physical mass from the lagrangian mass. We are really interested in
just renormalizable (not super-) theories. The distinction in general is that
super-renormalizable theories have only a finite number of divergent Feyn-
man graphs, not counting divergences within larger graphs. In ABC the only
one is the self-energy graph Π[2], though of course that bubble could appear
within any graph on one of its propagators. For renormalizable theories there
are only a finite number of invariant matrices which diverge, but there can
be infinitely many graphs which can contribute. More relevant to the present
discussion, however, is that the field-strength and coupling constant renor-
malization are finite in ABC theory but not in QED and other really relevant
theories. Each of these infinities will affect only the values of parameters in
the lagrangian, and their relation to physical observables, so that if we reg-
ulate the theory, perhaps with a cutoff, and hold the physical observables
fixed while we let the cutoff go away, the things that diverge are only the
parameters in the lagrangian, and physical predictions are okay.

Still, it is disconcerting to be basing our calculations on perturbation
theory around a free theory which differs infinitely from our observed values,
and it would be better if we could systematically do a perturbation around
a basis that was not too far off. To do that, we rewrite the division between
the bare lagrangian L̂0,A = 1

2
∂µφ̂A∂µφ̂A − 1

2
m2

0,C φ̂2
A and L̂0,B and L̂0,C and

the interaction piece L̂int = −g0φ̂Aφ̂Bφ̂C . We first reexpress6 it in terms of
the renormalized field φ̄j(x) := Z

−1/2
j φ̂j(x), the renormalized masses m̄j and

the renormalized coupling ḡ and define the noninteracting lagrangian to be
L̄0,j = 1

2
∂µφ̄j∂

µφ̄j − 1
2
m̄2

0,jφ̄
2
j and throw the rest of L̂0 into the interaction

6My notation differs from the book. I am calling the parameters in the original La-
grangian m0,j and g0 and the field φ̂, but the renormalized quantities m̄j (= mph,j in

book), ḡ (gph in book) and φ̄j (= φ̂ph,j in book).
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piece. This means that the bare Lagrangian fields will create particles with
the correct weight, will have propagators that blow up at the right mass. Of
course we have added to the interaction term

L̂0 − L̄0 =
∑

j

{

1

2
δZj∂µφ̄j∂

µφ̄j −
1

2
(δZjm̄

2
0,j + Zjδm

2
j )φ̄

2
j

}

,

which we can represent by . We also want to have the correct
O(g) coupling constant ḡ, so we define a coupling constant renormalization
constant ZV with

ZV ḡ = g0

√

ZAZBZC ,

so the interaction term in the original lagrangian

−gφ̂Aφ̂Bφ̂C

= −ḡφ̄Aφ̄Bφ̄C

−(ZV − 1)ḡφ̄Aφ̄Bφ̄C ,

and the second term will be a new counterterm represented
by this diagram.

Note that the division of m0,j and g into the counterterms and the lowest
order piece is chosen by insisting, at each order in perturbation theory, that
the particle mass and the three-point function, defined appropriately, be the
observed values.


