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Bjorken Scaling, Partons
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As we mentioned in considering e+e− → hadrons, hadronic particles are
not elementary particles with simple fields interacting with simple HI terms.
At low energies the interactions are strong and not subject to perturbation
theory calculations. At short distances the interactions are weak. If a virtual
photon of large q2 comes along and interacts with part of a hadron, that part
may not interact immediately with the rest of the hadron, though as it tries
to escape (a longer distance phenomenon) it will need to.

Picture the virtual photon as interacting elastically with a piece of the
hadron, which we will call a parton. Then that piece, which has gained a
lot of momentum relative to the rest of the hadron, will have long-distance
interactions with it which will result in the hadronic matter breaking into
pieces. If the initial interaction can be treated independently of the rest,
the inclusive cross section will be given by that for elastic proton-parton
scattering. If the parton is a fermion, it will be given in terms of the form
factors for that parton, but with the initial parton momentum only a fraction,
xpµ, of the proton’s momentum. Of course if we take that literally, that
implies the mass is xM , which probably doesn’t make much sense, but at
high momentum transfers maybe any fixed mass will do. The partons final
momentum is xpµ + qµ, so again assuming its mass is fixed, (xpµ + qµ)2 =
x2M2 =⇒ q2 = −2xp · q = −2xMν, or

x = Q2/2Mν.

Thus the form factors Wi(Q
2, ν) contain a δ(ν − Q2/2Mx)

Now the proton consists of many partons, and each may carry a varying
fractions xj of the proton’s momentum, and if we assume they are elementary
fermions of charges ej , the total cross section from all the gluons will be
an integral over the parton distribution fj(x), which gives the likelihood of
finding a parton of type j with a fraction x of the proton’s momentum. Each
parton will give a contribution e2

jδ(ν − Q2/2Mx) to W2 if it’s there, and
(ν2/Q2)e2

jδ(ν − Q2/2Mx) to W1. Then

W2(ν, Q
2) =

∑

j

∫

1

0

dx fj(x) e2

jδ(ν−Q2/2Mx) =
1

ν

∑

j

xfj(x)e2

j

∣

∣

∣

∣

∣

∣

x=
Q2

2Mν

=:
1

ν
F2(x)
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W1(ν, Q
2) =

∑

j

∫

1

0

fj(x)e2

j

Q2

4M2x2
δ(ν − Q2/2Mx)

=
1

4Mx2ν

∑

j

xfj(x)e2

j

∣

∣

∣

∣

∣

∣

x=
Q2

2Mν

=
1

2M

∑

j

e2

jfj(x) =:
1

M
F1(x)

Thus
F2(x) = x

∑

j

e2

jfj(x) = 2xF1(x),

where the relation F2(x) = 2xF1(x) is called the Callen-Gross relation.
In the book there is a discussion of how to view this cross section as a sum

of a transverse polarization piece and a longitudinal polarization piece. For a
real photon we know there are only the transverse polarizations, but we are
treating the electromagnetic field Aµ as having four possible polarizations.

Consider a virtual photon with spacelike momentum qµ = (q0, 0, 0, q3),
with Q2 = −q2 = q2

3 − q2
0 . The transverse polarizations can be written in

terms of the two helicity ±1 states ǫµ(λ = ±1) = ∓(0, 1,±i, 0)/
√

2. Define
a longitudinal polarization1 ǫµ

L = (q3, 0, 0, q0)/
√

Q2, and also a gauge piece2

ǫµ
g = (q0, 0, 0, q3)/

√
Q2 = qµ/

√
Q2. So we have four polarization vectors

m = +1,−1, L and g,

ǫµ
±1 = ∓(0, 1,±i, 0)/

√
2

ǫµ
L = (q3, 0, 0, q0)/

√

Q2 with

ǫµ
g = (q0, 0, 0, q3)/

√

Q2

(ǫ∗m)µ(ǫn)µ = ζmδmn, (1)
∑

m

ζm(ǫ∗m)µ(ǫn)ν = gµν , (2)

with ζL = 1, ζg = ζ±1 = −1.

Now when we calculate M for e−p scattering, we have the photon prop-
agator −gµρ/q2 connecting Je

µ and JX
ρ . If we wish to ask the contribution

of the different polarizations of the virtual photon, we could write this as
−∑

m ζmǫ∗µ
m ǫρ

mJe
µJ

X
ρ /q2. This would break the amplitude up into the contri-

bution of each “helicity”, but why is the square a simple sum? That is, why
is the cross section a sum of transverse and longitudinal pieces, rather than
the amplitude is, and the cross section could have interference terms?

One way to understand3 why there should be no interference is to go to
the frame which is the center of mass of the outgoing and incoming electrons

1Aitchison and Hey call this ǫ
µ(λ = 0), but this is a bit confusing as 9.39 and 9.42

differ in sign, and ǫL enters the completeness condition (2) below with a negative sign.
2Just a name I made up, not generally used.
3I need to thank Prof. Schnetzer for this argument.
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(even though they don’t exist at the same time, they still constitute two
timelike forward-directed particles so they have a center of mass frame).

Then rotate so that ~k ′ is in the z direction, and as ~k = −~k ′, q = k′ −
k = (0, 0, 0,

√
Q2), so everything is along the z axis. If the initial and final

helicities are the same, the spin along the z axis has flipped, and the photon
must have helicity ±1. If the spin has not flipped, the photon has helicity
zero, and is pure longitudinal. As the electron states are not virtual but
have definite, even if unmeasured, spins, there is no interference between
longitudinal and transverse virtual photons.

[I must admit that I tried to work out this argument algebraically and
failed, seeming to find there is no longitudinal contribution to the electron
vertex in the limit me → 0 in which we are working.]

Read the discussion in the book, sections 9.1 and 9.2, on Bjorken scaling,
which argues that the observation that the transverse photon contribution
dominates the longitudinal one is evidence that the partons are spin 1/2
particles. This encourages us in our view that the charged ingredients of
hadronic matter are Dirac particles, namely quarks.

Partons as Quarks and Gluons

We saw that the deep inelastic scattering cross sections are determined by
the structure functions F1(x) and F2(x), with F2(x) =

∑

j e2
j xfj(x), where

fj(x) is the probability of finding a quark of type j with momentum xpµ,
where pµ is the momentum of the proton. This is really supposed to be
thought of in a frame in which the proton is moving near the speed of light,
the infinite momentum frame, in which we can imagine that the interactions
between quarks and gluons is slowed down. Remember that in the proton’s
rest frame the partons are strongly interacting and one cannot picture it as
three quarks moving slowly. For example, the proton mass is nothing like
the sum of twice the u mass and the d mass, each of which is thought to
be only a few MeV. In addition to these three quarks, there can be pairs of
virtual quarks and antiquarks, and there are gluons, colored but chargeless
vector particles which form the foundation of QCD.

So each hadron will have distribution functions for each type of quark and
antiquark. Restricting ourselves to the lightest three flavors, for which flavor
symmetry SU(3)fl makes some approximate sense, we would have distribu-
tions for a proton of u(x), d(x), s(x) ū(x), d̄(x), s̄(x). The proton flavor tells
us the total nubmers must satisfy

∫

1

0 (u(x)− ū(x) = 2
∫

1

0 (d(x)− d̄(x) = 1 and

613: Lecture 15 Last Latexed: March 27, 2014 at 11:08 4

∫

1

0 (s(x) − s̄(x) = 0, By isospin invariance the partition functions for u and
d should be interchanged for the neutron, and similarly for ū and d̄, with
the strange and antistrange distributions unchanged. So the distribution
functions for e−p and e−n deep inelastic scattering are

F
ep
2 (x) =

x

9

(

4u(x) + 4ū(x) + d(x) + d̄(x) + s(x) + d̄(x)
)

F en
2 (x) =

x

9

(

u(x) + ū(x) + 4d(x) + 4d̄(x) + s(x) + d̄(x)
)

We might also ask about the total momentum, as we must have
∑

j

∫

1

0
xfj(x) =

1, but here we have not only the quarks but the gluons, and gluons appar-
ently carry about 56% of the momentum, but are not contributing to electron
scattering via photon exchange because they are uncharged.

Drell-Yan

The Drell-Yan process occurs in proton-proton scattering, in which a µ+ µ−

pair is produced along with hadronic matter which is summed over. As the
µ+ µ− is coupled by means of one photon exchange, and as we can imaging
the other end of the photon propagator is coupled to a quark parton from
one of the protons and an antiquark parton from the other, we can view
this as an integral over distribution functions of qq̄ → µ+ µ− scattering,

which has a total cross section σ(qaq̄a → µ+ µ−) =
4πα2

3q2
e2

a, where in the

proton-proton center of mass frame, the partons have pq = xq(P, 0, 0, P ),
pq̄ = xq̄(P, 0, 0,−P ), so q0 = (xq + xq̄)P , q3 = (xq − xq̄)P , and therefore
q2 = 4xqxq̄P

2 = xqxq̄s = τs. We need to fold this with the distribution
functions, but because the quark and antiquark need to have the same color,
and our distribution functions so far have been summed over color, we must
divide by 3. Then

d2σ =
4πα2

9 s x1x2

∑

j

e2

j [qj(x1)q̄j(x2) + qj(x2)q̄j(x1)]dx1dx2.

This brings us to the end of chapter 9. Next time, we will return to ideal
quantum field theory issues, treating field theory beyond the tree approxi-
mation.


