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Physics 613 Lecture 14 March 25, 2014

e+ e− → X X̄ , Inclusive Cross Sections

Copyright c©2014 by Joel A. Shapiro

e+ e− → X X̄

From the Feynman rules, we see that the diagram describing e− µ− scattering
looks just like the diagram for e+ e− → µ− µ+, just turned on its side, with
some momentum arrows reversed. In fact,
for any fermion X, the invariant matrix
element for this process is

iM = −i
eQ

q2
ūX(~p ′, r′)γµvX(~p, r)

× v̄e(~k
′, s′)γµue(~k, s)

When we evaluate
∑

|M|2 summed over
spins, we get e2Q2/q4 times the product of

s’

−e

k’
p’
r’

−µ

µ+
k

s

e

r

+
q

p

Mµρ =
1

2
ūX(~p ′, r′)γµvX(~p, r)v̄X(~p, r)γρuX(~p ′, r′) =

1

2
Tr[( 6p′+M)γµ( 6p−M)γρ]

= 2p′µpν + 2p′ νpµ − 2p′ · pgµν − 2M2gµν = 2p′µpν + 2p′ νpµ − q2gµν ,

with

Lµρ =
1

2
Tr[( 6k′ + m)γµ( 6k − m)γρ] = 2k′

µkν + 2k′
νk

µ − q2gµν .

Note that each of L and M are exactly the negative of what we got in con-
sidering e− µ− scattering, with the signs of k′ and p changed because the
momentum arrows on those lines have been reversed. The product which
determines the unpolarized scattering cross section is exactly the same func-
tion,

1

4

∑

r,r′,s,s′

MM∗ =
4e2Q2

q4

[

2p′ · k′p · k + 2p′ · kp · k′ + (m2 + M2)q2
]

as we had before, though it would be a more generalizable statement if we
said the function of the momenta is the same if we consider all momenta
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defined with the arrows in the same direction for the two processes. Then
the amplitude changes sign for each reversed particle, and the square that
determines the cross section is exactly the same function. We note that
for this conversion the k′ and p changed signs. This is consistent with the
q = p′ − p of e µ scattering being converted into q = p′ + p here. Of course
the kinematics is different — now q2 = s, and, in the center of mass,

p · k = p′ · k′ = E2 + |~p||~k| cos θ, p · k′ = p′ · k = E2 − |~p||~k| cos θ.

If we neglect the electron mass, we get

(

dσ

dΩ

)

CM

=
|~p|

256π2E s

∑

|M|2

=
e2Q2

64π2s3

√

1 −
M2

E2
16
[

E4(1 + cos2 θ) + E2M2(1 − cos2 θ)
]

=
Z2α2

4s

√

1 −
M2

E2

[(

1 +
M2

E2

)

+

(

1 −
M2

E2

)

cos2 θ

]

,

where Q = Ze. Integrating over solid angle, we get

σtotal =
4πZ2α2

3s

√

1 −
M2

E2

(

1 +
1

2

M2

E2

)

−→
s≫M2

Z2
4πα2

3s
.

This cross section has been well verified for µ− µ+ and for τ− τ+.

Crossing Symmetry

I will come back to say more about e+ e− → X X̄ in a moment, but first I
want to say more about the relationship of invariant amplitudes for processes
which differ by having an external particle shifted from incoming particle to
outgoing antiparticle, or vice versa. In the Feynman rules, the only differ-
ences are the direction of the momentum and switching u ↔ v. If we sum
over spins, this switch just changes the sign of the mass associated with the
momentum, so 6p+m → −6p−m, if we call the momentum of the antiparticle
−p. Things are a little more awkward if we try to identify spins, because
then we would need to relate the φr and χs, which we have left vague, but
even with spins we can say that the appropriate amplitudes are the same
except for a sign change, and an analytic continuation in the variables. For
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example, here we have q2 = (k + k′)2 > 0, while in µe scattering we had
q2 = (k − k′)2 < 0, but

∑

|M|2 is the same function of q2, even though it
is evaluated for different values of q2 in the two processes. This is a general
feature of the invariant scattering amplitudes.

R

For leptons, which we can treat as elementary Dirac particles, we can calcu-
late the scattering amplitudes explicitly. If there were nothing but leptons,
we could say that the total cross section for e+ e− scattering would be

σtot = σe+ e−→e+ e− + σe+ e−→µ+ µ− + σe+ e−→τ+ τ−

plus some much smaller contribution with 4 leptons or more in the final state.
But much more significant is the production of hadrons, strongly interacting
particles. In the book the process e+ e− → π+ π− is considered, treating the
pions as pseudoscalar point particles but then using form factors to handle
their unknown structure. We do not have a fundamental theory which enables
us to calculate structure of hadrons like the pion, even though we believe it
is determined by quantum chromodynamics, QCD, because the interactions
between hadrons are so strong. But it turns out that at high energies, these
interactions between quarks and gluons are weakened.

Now if there were no strong interactions between quarks, each species of
quark could be pair produced in e+ e− scattering. The cross section for a
quark of type j, at energies much greater than the quark mass, would just be

σe+ e−→qj q̄j
= Z2

j

4πα2

3s
= Z2

j σe+e−→µ+µ− .

Here Z is1 the ratio of the quark charge to the positron’s charge, and is 2/3
for the up quark2 and −1/3 for the down and strange quarks3. If we define

1Z is not the usual name, which the book calls ea and many call Q, but why not use
the nuclear physics definition?

2and also the charm and top quarks.
3and bottom quark.
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R(s) =
σe+ e−→all hadrons

σe+ e−→µ+ µ−

,

we would expect R =
∑

j Z2
j ,

where the sum should in-
clude all quarks light enough
to be pair produced. Actu-
ally there are hadronic res-
onance states R which, like
the ∆++ in π+p scattering,
produce strong peaks when
s = M2

R, and there are also

R

1

2

3

4

5

6

E
1 10 (GeV)

CM

threshold effects ∼ |~k|/E when the final particles are not ultrarelativistic.
Also, as quarks can emerge only coupled with other quarks or antiquarks,
the thresholds are at twice the mass of the lightest meson containing the j’th
quark, rather than at twice the “bare” mass of the undressed quark.

In the plot of R vs. ECM, below 2 GeV we see the strong resonance peaks
from the ρ0 and φ0 resonances, and then perhaps the threshold of having all
three light quarks contributing. As the charges of u, d and s are 2/3, −1/3
and −1/3 respectively, we might have expected R = (2/3)2 + (−1/3)2 +
(−1/3)2 = 2/3. After twice the D-meson mass (2 × 1.87 GeV) we might
expect an additional (2/3)2 to bring R up to 10/9. But we see that the
actual R does have that shape but at three times the value, R ≈ 2 below 4
GeV, jumping to R ≈ 3 1/3 from 4 up to ηb meson at 9.4 GeV, when the
bottom quark starts contibuting its 3 × (−1/3)2.

This is strong evidence that in fact each of these flavored quarks comes
in three colors.

Inelastic e − p Scattering

Earlier we discussed e− p elastic scattering, and we found that the answers
could be expressed in terms of two form factors which are functions of q2,
where qµ is the momentum transferred from the electron. All we could say
about these form factors from first principles was that F1(0) = 1. To under-
stand the q2 dependence would necessitate understanding the strong interac-
tions among the constituents of the proton. One feature of strong interaction
scattering at high energies is that many particles are produced, mostly in the
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direction of the incident beams, with no particle having a large transverse
momentum. Thus if an electron does transfer significant q2 to part of a pro-
ton, it is unlikely to be shared with all the rest of the proton, the proton will
come apart and we have inelastic, rather than elastic, scattering.

Now consider such scattering, e− p → e− +X, where X is a multiparticle
state with overall charge +e, baryon number +1, and total momentum p′µ.
Let kµ and k′

µ be the initial and final electron momenta, and pµ the initial
proton momentum. As q = k′−k, q2 < 0, so often people define Q2 = −q2 >
0. As we said, at high momentum transfer Q2, the final hadronic state X is
likely to consist of many particles, with an invariant mass squared W 2 = p′ 2

considerably greater than the proton’s M2. It is still a good approximation
to assume the electromagnetic interaction can be treated as a single photon
exchange, so

M = −
eūe(~k

′, s′)γµue(~k, s)

q2
〈X| Jµ |p, s〉 .

In calculating the cross section, the electron part of
∑

|M|2 will be unchanged
from the elastic case, Lµν = 2k′

µkν + 2k′
νk

µ + q2gµν , and the hadronic piece,
which we will now call W µν is defined as

e2W µν =
1

4πM

1

2

∑

s

∑

X

(2π)4δ4(p′−p−q) 〈p, s| Jµ(0) |X, p′〉 〈X, p′| Jν(0) |p, s〉 .

What can W µν depend on? and how must it transform? As it is real and
equal to (W νµ)†, it must be a real symmetric tensor, and can be a function
only of qµ, pµ and the scalars W 2 and M2. By gauge invariance qνJ

ν = 0, it
must vanish when contracted with q. Noting that

W 2 = p′ 2 = (p + q)2 = M2 + 2p · q + q2,

we may take as the second scalar parameter, instead of W 2,

ν :=
p · q

M
=

Q2 + W 2 − M2

2M
.

Thus there are only two form factors available for W νµ,

W νµ(q, p) =

(

−gµν+
qµqν

q2

)

W1(Q
2, ν)+

(

pµ−
p · q

q2
qµ

)(

pν−
p · q

q2
qν

)

W2(Q
2, ν)

M2
.

We note that there is now a dependence both on Q2 and ν or W 2, so these
form factors are more difficult than the elastic scattering version, where W 2
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was fixed at M2, or ν = Q2/2M . Comparing to the e− X scattering, we see
that in that case

W2 = Z2δ(ν − Q2/2M), W1 =
Z2Q2

4M2
δ(ν − Q2/2M).

The cross section is4

dσ =
1

2EA 2EB |~vA − ~vB|

d3k′

2ω′(2π)3

∑

|M|2

where
∑

|M|2 =
e4

Q4
4πMW µνLµν .

Recalling that qµLµν = 0, and q2 = (k − k′)2 = −2k · k′ as we are treating
me ∼ 0, we see

gµνLµν = 4k · k′ + 4q2 = −2Q2

pµpνLµν = 4p · kp · k′ − M2Q2.

In the “lab” frame, p = (M,~0), p · k = Mk, p · k′ = Mk′, and Q2 = 2k · k′ =
2kk′(1 − cos θ) = 4kk′ sin2(θ/2), we have

∑

|M|2 =
e4

Q4
4πM

(

2Q2W1(Q
2, ν) + (4kk′ − Q2)W2(Q

2, ν
)

=
e4

Q4
4πM 4kk′

(

2W1 sin2(θ/2) + W2 cos2(θ/2)
)

.

Then

d2σ

dΩdk′
=

k′

8(2π)3kM

(4πα)2

(4kk′)2 sin4(θ/2)
16πMkk′

(

2W1 sin2
θ

2
+ W2 cos2

θ

2

)

=
α2

4k2 sin4(θ/2)

(

2W1 sin2
θ

2
+ W2 cos2

θ

2

)

.

4The kinematic initial state factor in the cross section formula can be written in several
different ways if we assume the momenta lie along the same axis, say the z axis. The
denominator

2EA 2EB|~vA − ~vB| = 4|EBp3

A − EAp3

B| = 4|ǫµxyνp
µ
Bpν

A|.

This makes it clear that it is invariant under Lorentz boost along the z axis. Furthermore
the square is 16(p2

Ap2

B − (pA µp
µ
B)2, so the first denominator is 4

√

(pA · pB)2 − m2

Am2

B.
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As we have no φ dependence, dΩ = 2πd cos θ, and as Q2 = 2kk′(1 − cos θ)
and ν = k − k′, and k is fixed, dQ2 ∧ dν = 2kk′d cos θ ∧ dk′, so

d2σ

dQ2 dν
=

πα2

4k3k′ sin4(θ/2)

(

2W1 sin2
θ

2
+ W2 cos2

θ

2

)

.


