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Physics 613 Lecture 11 March 4, 2014

Electromagnetism; P and C

Copyright c©2014 by Joel A. Shapiro

In Lecture 4 we saw that the Lagrangian density which gives Maxwell’s
equations for the electromagnetic fields interacting with charges and currents
is

L = −1

4
F µνFµν −AνJ

ν .

The dynamical fields are Aµ, in terms of which

F µν = ∂µAν − ∂νAµ.

The Euler-Lagrange equation one gets by varying L with respect to Aν are

∂µF
µν = Jν ,

where Jν is a conserved current dependent on the “matter fields”, which is
is to say the charged particles, whether complex scalars or Dirac particles.

One serious complication in quantizing the Aν field is the invariance under
gauge transformations. If we first consider the pure Maxwell lagrangian
without the matter fields, we see F µν is completely unaffected by a gauge
transformation under which

Aν → A′
ν = Aν + ∂νχ (1)

for an arbitrary differentiable function χ(xµ). As the free lagrangian depends
only on F µν and not on Aν directly, the equations of motion can do nothing
to determine χ(xµ), and the dynamical equations are nondeterministic for
Aν .

This indeterminancy is also clear in the equations of motion for A. Con-
sider the J = 0 equations,

∂µ(∂µAν − ∂νAµ) = 0.

This appears to be four PDE equations (index ν) in the four functions Aµ, but
of course Aν = ∂νχ satisfies them for any function χ. In momentum space,
the Fourier transformed equations are (k2δν

µ − kνkµ)Ãµ = 0, and we see that
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contracting these four equations with kν gives an identity independent of Ãµ,
so we really have only three equations. One last way of seeing something is
wrong is to ask for the canonical momenta Πν conjugate to Aν , which are

Πν :=
∂L
∂Ȧν

= F 0ν ,

which shows, by the antisymmetry of F , that Π0 ≡ 0, which is a constraint
rather than an equation of motion on phase space, and also makes it impos-
sible to have Π0 not commute with A0.

Even if we have an interaction with a conserved current, the gauge trans-
formation (1) changes the action by

δS =
∫

d4x δL = −
∫

d4x Jν ∂νχ = −
∫

d4x ∂ν (χJν) = −
∫

S
d3SνJ

νχ ∼ 0,

where the third equal sign is because the current Jν is conserved (∂νJ
ν =

0), the fourth is by Gauss’ Law (the divergence theorem) with S a three-
dimensional hypersurface surrounding all of spacetime, and the ∼ implying
that all currents vanish at infinity. Thus variation by χ does not give an
equation of motion.

Note that the lack of determinism for Aν classically does not mean that
observable physics is undetermined, because the electric and magnetic fields
depend only on F µν . In order to have deterministic equations for Aν , one
may impose an arbitrary gauge condition. A popular one is the Lorenz1

gauge, ∂νA
ν = 0. If we start off with any field Aν , we can find an equivalent

field A′ satisfying the Lorenz condition by choosing χ such that ∂νA
′ ν = 0 =

∂νA
ν +∂ν∂

νχ, by solving the four dimensional Poisson equation χ = −∂νA
ν

(which we could do with a Green’s function).
If we agree to impose the Lorenz condition, the equations of motion

become simply the massless Klein-Gordon equation for each component,
Aµ = 0, which means the solutions are

Aµ = ǫµeikνxν

with k0 = ±|~k|.

The constant 4-vector ǫµ is the polarization vector, and shows that there are
four components, although the Lorenz condition constrains it with kµǫ

µ = 0.

1The book wrongly attributes this to Hendrik Antoon Lorentz, the guy with the in-
variance, but it is actually due to Ludvig Lorenz.
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Actually the Lorenz condition does not uniquely determine the gauge,
because if χ is a solution of the Laplace equation, χ = 0, a further gauge
transformation Aν → A′

ν = Aν +∂νχ leaves ∂νA′
ν = ∂νAν +∂ν∂νχ = 0+0 = 0

unchanged. This means ǫµ → ǫµ +βkµ leaves the physics invariant (as k2 = 0
for solutions). These complicated considerations tell us that although A
is a four-component vector, a physical photon has only two polarizations.
The component parallel to kµ (in four dimensions) has no effect, and only
components perpendicular to kµ, in the sense that kµǫµ = 0, are allowed.
Note for a photon moving in the z direction, kµ = (E, 0, 0, E), the physical
polarizations are superpositions of ǫµ(λ = ±1) = ∓ 1√

2
(0, 1,±i, 0), where λ is

the helicity (and these are each circularly polarized). For photons in other
directions, the polarization vectors are suitably rotated. We have normalized
the polarizations so that ǫ∗µ(λ)ǫµ(λ′) = −δλλ′ .

Thus we see that the most general solution of the free Maxwell equations
is

Aµ(x) =
∫ d3k

(2π)3

√

2|~k|

∑

λ

[

ǫµ(~k, λ)α(~k, λ)e−ikνxν

+ǫµ ∗(~k, λ)α∗(~k, λ)eikνxν
]∣

∣

∣

k0=|~k|
.

Quantization

The various presentations of the gauge problem all manifest themselves when
it comes to trying to quantize the Aµ field. The fact that there is not even an
expression Π0(Aν , Ȧν) other than 0 means canonical quantization is impos-
sible. For the scalar and Dirac fields we saw the propagator is the Green’s
function for the equation of motion, or in momentum space just the inverse,
but the equation of motion for Ãν(k), (−k2δν

µ + kµk
ν)Ãν = M ν

µ (k)Ãν = 0
does not have an inverse as M ν

µ (k)kν = 0 shows M is a singular matrix.
These problems would have been ameliorated if the Lagrangian had been

Lξ = −1

4
F µνFµν −

1

2ξ
(∂µA

µ)2 ,

where ξ is a constant known as the gauge parameter. Then

∂Lξ

∂∂µAν
= F µ

ν − 1

ξ
δµ
ν (∂ρA

ρ) ,

so the equations of motion are

∂µ (∂µAν − ∂νA
µ) +

1

ξ
∂ν∂ρA

ρ = 0.
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In momentum space this is Mξ(k)
ν

µ Ãν = 0, with Mξ(k)
ν

µ = −k2δν
µ +

ξ − 1

ξ
kµk

ν , and we see the inverse

(

M−1

ξ (k)
)ρµ

=
−gρµ + (1 − ξ)kρkµ/k2

k2 + iǫ

exists, and provides iM−1(k) as the propagator.
Note also that with the ξ lagrangian and equations of motion,

kµMξ(k)
ν

µ Ãν = 0 =

(

k2kν +
ξ − 1

ξ
k2kν

)

Ãν

so either k2 = 0 or kνÃν = 0, but furthermore, if kνÃν = 0, Mξ(k)
ν

µ Ãν =

−k2Ãµ = 0 so we still have k2 = 0 for any nonvanishing A, and if we have
k2 = 0, Mξ(k)

ν
µ Ãν = ξ−1

ξ
kµk

νÃν = 0 so we still have kνÃν = 0 unless ξ = 1.
Thus the ξ lagrangian for 0 6= ξ 6= 1 gives both the Lorenz condition and
A = 0 as equations of motion, which also imply the Maxwell equations.

What can this all mean? We have a continuum of different lagrangians
all of which give Maxwell’s equations, one of which (ξ = 0) has gauge invari-
ance and the others give deterministic equations which can be canonically
quantized. What we will do is take the quantization from the ξ = 1 case,
which takes Aν = 0 as the equation of motion for all four components, and
we will impose the Lorenz condition on all external photons. It will turn out,
because of the Ward identity, that the arbitrary piece ∝ (1 − ξ)kµkν in the
propagator will turn out not to give any contribution. This can only become
clearer when we discuss interactions.

Electromagnetic Interactions

As we have discussed several times already, the way to incorporate electro-
magnetism into the dynamics of charged fields is by minimal substitution,
replacing all partial derivative ∂µ acting on a field of charge q with a co-

variant derivative D̂µ = ∂µ + iqÂµ. Thus the Dirac lagrangian becomes

Lq = ˆ̄ψ
(

iγµD̂µ −m
)

ψ̂ = LDirac − q ˆ̄ψγµψ̂Âµ, where LDirac is the free Dirac
lagrangian density. Of course the full lagrangian density will also have to
include that for free electromagnetism, LMaxwell. Note that our interaction

term L̂int = −q ˆ̄ψγµψ̂Âµ does not contain derivatives of any of the fields,
so it doesn’t change the canonical momenta or the quantization conditions.
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The interaction hamiltonian density is Ĥ′ = ĴµÂ
µ, where Jµ = q ˆ̄ψγµψ̂ now

includes a factor of the charge and is the conserved electromagnetic current.
We will be able to do perturbation theory as we did for real scalar fields,

with the appropriate propagators and vertices. As we have charged particles
and propagators which are time-ordered vacuum expectation values of a field
and its hermitian conjugate, the lines have a direction, drawn in the direction
of particle flow (or opposite anti-particle flow), which is not necessarily in a
direction forward in time. Also, as the Dirac fields have Dirac indices, the
Dirac propagators are matrices in spinor space, and the photon propagators
have Lorentz indices.

P, C and T for Quantum Fields

As we have seen, symmetries R act on quantum operators Ô by conjugation,
ÔR = R̂ÔR̂−1. As our quantum fields are operators, the possible symme-
tries P , C and T will give transformed fields. So φ̂P (~x, t) = P̂ φ̂(~x, t)P̂−1,
ψ̂P (~x, t) = P̂ ψ̂(~x, t)P̂−1, etc.. But we have already discussed what the rela-
tion between φP and φ, and between ψP and ψ, should be, so we expect

φ̂P (~x, t) = φ̂(−~x, t), ~̂AP (~x, t) = − ~̂A(−~x, t),
ψ̂P (~x, t) = γ0ψ̂(−~x, t), Â0

P (~x, t) = Â0(−~x, t)

where we have made simple choices for the arbitrary phase factors.
To find how these discrete symmetries act on the creation and annihilation

operators, let us first take the simple case of the real scalar field.

φ̂P (~x, t) = P̂ φ̂(~x, t)P̂−1

=
∫

d3~k

(2π)3
√

2ωk

[

P̂ â(~k)P̂−1e−iωt+i~k·~x + P̂ â†(~k)P̂−1eiωt−i~k·~x
]

= φ̂(−~x, t) =
∫

d3~k

(2π)3
√

2ωk

[

â(~k)e−iωt−i~k·~x + â†(~k)eiωt+i~k·~x
]

We can make the exponential factors line up if we replace the integration
variable ~k → −~k in the last expression, so we see

P̂ â(~k)P̂−1 = â(−~k), P̂ â†(~k)P̂−1 = â†(−~k).
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That was simple enough. Now consider the Dirac field

ψ̂P (~x, t) = P̂ ψ̂(~x, t)P̂−1 =
∫ d3~k

(2π)3
√

2ωk

∑

s
[

P̂ ĉs(~k)P̂
−1u(~k, s)e−iωt+i~k·~x + P̂ d̂†s(

~k)P̂−1v(~k, s)eiωt−i~k·~x
]

= γ0ψ̂(−~x, t) =
∫

d3~k

(2π)3
√

2ωk

∑

s
[

ĉs(~k)γ
0u(~k, s)e−iωt−i~k·~x + d̂†s(

~k)γ0v(~k, s)eiωt+i~k·~x
]

=
∫

d3~k

(2π)3
√

2ωk

∑

s
[

ĉs(−~k)γ0u(−~k, s)e−iωt+i~k·~x + d̂†s(−~k)γ0v(−~k, s)eiωt−i~k·~x
]

Once again we have reversed the integration variable ~k to get the exponentials
to agree, and we see that

P̂ ĉs(~k)P̂
−1 = ĉs(−~k), P̂ d̂s(~k)P̂

−1 = −d̂s(−~k),

because γ0 reverses the signs of the lower two components of u and v, which
together with ~p→ −~p leaves u unchanged but reverses the sign of v,

γ0u(−~k, s) = u(~k, s), γ0v(−~k, s) = −v(~k, s).

We assume P is a unitary operator2 so from ψ̂P (~x, t) = P̂ ψ̂(~x, t)P̂−1, we
have

ψ̂†
P (~x, t) =

(

P̂ ψ̂(~x, t)P̂−1
)†

= P̂ ψ̂†(~x, t)P̂−1

=
(

γ0ψ(−~x, t)
)†

= ψ†(−~x, t)γ0.

Then under parity, a bilinear with an arbitrary spinor matrix Γ, will be
transformed

ˆ̄ψ(~x, t)Γψ̂(~x, t) −→
P

(

ˆ̄ψ(~x, t)Γψ̂(~x, t)
)

P

= ψ̂†(−~x, t)γ0Γγ0ψ̂(−~x, t)

Any arbitrary spinor matrix can be expanded in terms of γµ’s, and we see that
each γj will cause a change of sign due to anticommuting with γ0, but γ0’s will

2We will have trouble with T , as we shall see, but P and C can be implemented as
unitary operators.
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not. In particular, our electromagnetic current Ĵµ(~x, t) = q ˆ̄ψ(~x, t)γµψ̂(~x, t)
will transform as a polar vector should,

~̂JP (~x, t) = − ~̂J(−~x, t), Ĵ0

P (~x, t) = +Ĵ0(−~x, t).
As this is also the way Aµ transforms, we see that the interaction term
− ∫ d4xAµ(x)Jµ(x) is invariant under parity. The other bilinears also trans-

form as we saw in Lecture 5, with ˆ̄ψψ̂ a scalar, i ˆ̄ψγ5ψ̂ a pseudoscalar, ˆ̄ψγµγ5ψ̂

an axial vector, and i
2

ˆ̄ψ[γµ, γν ]ψ̂ a tensor.
Under charge conjugation, particles are supposed to be interchanged with

antiparticles with no change in xµ or pµ. Note antiparticles still have positive
energy. Thus we expect

Ĉφ̂(~x, t)Ĉ−1 = φ̂†(~x, t), Ĉψ̂(~x, t)Ĉ−1 = iγ2(ψ̂†)T (~x, t),

ĈÂµ(~x, t)Ĉ−1 = −iAµ(~x, t),

where we have used our argument from the Dirac picture for how the com-
ponents of ψ mix. We also need the transpose to keep ψ̂P a column spinor
rather than a row.

Expanding the fields once again tells us how the creation and annihilation
operators transform. For complex scalars, Ĉâ(~k)Ĉ−1 = b̂(~k), Ĉâ†(~k)Ĉ−1 =

b̂†(~k), and similarly with a and b interchanged. Similarly for the Dirac field,

Ĉĉs(~k)Ĉ
−1 = d̂s(~k), Ĉĉ

†
s(
~k)Ĉ−1 = d̂†s(

~k), and similarly with c and d inter-
changed. For this to work, we need to have

Ĉψ̂Ĉ−1 =
∫ d3~k

(2π)3
√

2ωk

∑

s

[

d̂s(~k)u(~k, s)e
−ikµxµ

+ ĉ†s(
~k)v(~k, s)eikµxµ

]

=
∫

d3~k

(2π)3
√

2ωk

∑

s

[

ĉ†s(
~k)iγ2u∗(~k, s)eikµxµ

+ d̂s(~k)iγ
2v∗(~k, s)e−ikµxµ

]

which requires iγ2u∗(~k, s) = v(~k, s), iγ2v∗(~k, s) = u(~k, s). Now iγ2 =
(

0 iσ2

−iσ2 0

)

and iσ2(~σ · ~p)∗ = −~σ · ~p iσ2, so with

u(~k, s) =
√
E +m

(

φr

~σ·~k
E+m

φs

)

, v(~p, s) =
√
E +m

(

~σ·~k
E+m

χs

χs

)

,

iγ2v∗(~k, s) =
√
E +m

(

iσ2χ
s ∗

−iσ2
~σ∗·~k
E+m

χs ∗

)

=
√
E +m

(

iσ2χ
s ∗

~σ·~k
E+m

iσ2χ
s ∗

)

= u(~k, s′)

iγ2u∗(~k, s) =
√
E +m

(

iσ2
~σ∗·~k
E+m

φs ∗

−iσ2φ
s ∗

)

=
√
E +m

(

− ~σ·~k
E+m

iσ2φ
s ∗

−iσ2φ
s ∗

)

= v(~k, s′)
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if we set χs′ = −iσ2φ
s ∗, φs′ = iσ2χ

s ∗. If you apply C twice, this sets
φs′′ = iσ2χ

s′ ∗ = iσ2iσ
∗
2φ

s = φs.
Note there was a certain ambiguity in our definitions of ĉs because we

didn’t actually specify φs and χs, and suggested they could be chosen inde-
pendently. In the Dirac picture, these actually gave the amplitudes for each
spin, but in the field theory it is more appropriate to think of that amplitude
as being in the c†s and d†s, and the φs and χs as being basis vectors in spinor
space. We could choose them to be what C suggests3, with φs = iσ2χ

s ∗.
Only after specifying these elements can we ask if a Dirac field can be its
own antiparticle. Such a field is called a Majorana spinor, and it can be be
expanded as

ψ̂M (x) =
∫

d3~k(2π)3
√

2ωk

∑

s

[

ĉs(~k)u(~k, s)e
−ikρxρ

+ ĉ†s(
~k)v(~k, s)e−ikρxρ

]

.

the lagrangian looks like the Dirac one, L = ˆ̄ψ(i 6∂−m)ψ̂, but here ˆ̄ψ cannot

be considered independent of ψ̂, as ψ̂MC = ψ̂M , so ˆ̄ψM = −iψ̂T
Mγ

2γ0, and

the mass term −m ˆ̄ψM ψ̂M = −mψ̂T
M (−iγ2γ0)ψ̂M = −mχ̂T iσ2χ+ hermitean

conjugate.

3The book and I disagree with what iγ2 is, but the book is inconsistent (perhaps) if

J.8 means γ2 =

(

0 σ2

−σ2 0

)

.


