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In Lecture 6 we discussed deriving field equations from the lagrangian
density, in particular for a scalar field. We observed that the field equations
could hold for a real or a complex field, and that a complex field could
be considered simply as two real fields with the same mass. We also saw
that even though in principle we should vary the two real fields to get the
equations of motion, one could get the right equations by varying the complex
field φ̂ and its hermitian (or complex) conjugate as if they were independent.
The only difference between the real field and the complex field is that the
expansion of φ̂ has an independent b†(~k) rather than a†(~k), and therefore the

conjugate field φ̂† contains a†(~k) and b(~k) and is different from φ̂.
We could have also started with n real scalars with the same mass, with

L =
1

2

n
∑

j=1

[(

∂µφ̂j
)

∂µφ̂j −M2φ̂2

j

]

,

which would, of course, just give the Klein-Gordon equation for each φ̂j
independently, and quantization would consist of having operators aj(~k) and

a†j(~k), with both operators for different j’s commuting with each other.
The Lagrangian is clearly invariant under rotations in the n dimensional

space indexed by j, which means under symmetry transformations φ̂j → φ̂′
j =

∑

kOAjkφ̂k, where O is an orthogonal matrix. The infinitesimal generators
of such orthogonal matrices are real antisymmetric matrices Ajk. Noether’s
theorem guarantees us that such a symmetry generates a conserved current.
To see this, we note that the variation δφ̂j =

∑

k Ajkφ̂k of the lagrangian
density is

δL =
∑

jk

Ajk
[(

∂µφ̂j
)

∂̂µφk −M2φ̂jφ̂k
]

which is clearly zero by
antisymmetry under j ↔ k

=
∑

jk

Ajk
[(

∂µφ̂j
)

∂̂µφk + φ̂j∂
µ∂µφ̂k

]

by the equations of motion

= ∂µ
∑

jk

Ajkφ̂j∂µφ̂k.

Thus we see that we can define currents

Jµjk = φ̂j
↔
∂µφ̂k := φ̂j∂

µφ̂k − φ̂k∂
µφ̂j
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are conserved currents, ∂µJ
µ
jk = 0. This gives us a global SO(n) symmetry.

The conserved charges are, of course,

Qjk =
∫

d3xJ0

jk, because then
d

dt
Qjk =

∫

d3x ∂0J
0

jk =
∫

d3x ~∇· ~Jjk =
∫

S
d~S· ~Jjk,

where S is a sphere at infinity, so assuming the current drops off (more
than quadratically) at infinity, the integral is zero, dQjk/dt = 0, and Qjk is
conserved.

SO(n) symmetry has played a role in particle physics for several n.
SO(32) appears in string theory, and SO(10) has been considered as a candi-
date grand unified theory (GUT), but by far the most commonly encountered,
though usually unrecognized, is SO(2), rotations in a plane. Considering the
plane as a complex plane, rotation is just multiplication by a phase, and as
we saw in Lecture 6, the complex scalar field fits this description. There is
only one conserved current and charge, Jµ = Jµ12 and Q = Q12, with

Jµ = φ̂1

↔
∂µφ̂2 := φ̂1∂µφ̂2 −

(

∂µφ̂1

)

φ̂2

with a conserved charge Q =
∫

d3x (π2(~x)φ1(~x) − φ2(~x)π1(~x)). An infinitesi-
mal symmetry transformation is generated by iǫQ, with

[iǫQ, φ1(~y)] = −iǫ
∫

d3x[π1(~x), φ1(~y)]φ2(~x) = −ǫφ2(~y),

while [iǫQ, φ2(~y)] = ǫφ1(~y), as given in AH 7.4.
As we discussed above, the Lagrangian density for the SO(2) real scalar

field can be written in terms of complex fields1

φ̂ :=
1√
2

(

φ̂1 − iφ̂2

)

=
∫

d3k

(2π)3
√

2ω

[

â(~k)e−ikµxµ

+ b̂†(~k)eikµxµ
]

, (1)

as L =
(

∂µφ
†
)

∂µφ − M2φ†φ. The current becomes Jµ = iφ̂†↔∂µφ̂. The

canonical momentum conjugate to φ̂ is

π̂ =
∂L
∂φ̇

= φ̇† =
∫

d3k

(2π)3

√

ω

2

[

iâ†(~k)eikµxµ − ib̂(~k)e−ikµxµ
]

, (2)

1Sorry, I don’t know why the book defines the complex φ̂ with the minus sign in 7.15, so

this rotation is through a negative infinitesimal angle ǫ. I don’t think it makes a difference,

except that it explains the e−iα in 7.22.
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where

â(~k) =
1√
2

[

â1(~k) − iâ2(~k)
]

, b̂(~k) =
1√
2

[

â1(~k) + iâ2(~k)
]

,

and then [âj(~k), â
†
k(
~k′)] = (2π)3δjkδ

3(~k −~k ′) implies

[â(~k), â†(~k′)] = (2π)3δ3(~k −~k ′) = [̂b(~k), b̂†(~k′)], [â(~k), b̂†(~k′)] = 0,

and of course two a’s or two b’s, without daggers, commute.
In terms of these complex fields, Q̂ = −i ∫ d3x

(

π̂(~x)φ̂(~x) − π̂†(~x)φ̂†(~x)
)

,

so [Q̂, φ̂(~y)] = −φ̂(~y). This also tells us [iǫQ, φ̂] = δφ̂ for a rotation of the
complex φ̂ by an angle of −ǫ.

From the expression for the conserved current Jµ = iφ̂†↔∂µφ̂, the conserved
charge

Q = i
∫

d3x
(

φ̂†π̂† − π̂φ̂
)

=
∫

d3k

(2π)3

[

â†(~k)â(~k) − b̂†(~k)b̂(~k)
]

.

We see that the a† creates a positive-charged particle and the b† creates its
negatively-charged antiparticle. The Hamiltonian, of course, is

H =
∫ d3k

(2π)3
ω~k

2
∑

j=1

a†j(
~k)aj(~k) =

∫ d3k

(2π)3
ω~k

(

a†(~k)a(~k) + b†(~k)b(~k)
)

.

The vacuum state |0〉 is annihilated by all aj(~k) and by a(~k) and b(~k).
The propagators are given by vacuum expectation values of products of

two fields, and as the φ̂’s commute with each other, the only nonzero ones
are

DF (~x1, ~x2) = 〈0|T φ̂(x1)φ̂
†(x2) |0〉 .

In the evaluation, the b’s act just as the a’s do, and the same as the a’s did
in the real scalar case, so the Feynman propagator is the same as it was in
that case, with the same Fourier transform,

D̃F (q) =
i

q2 −M2 + iǫ
,

though now when we claim this represents both the particle going forward
in time and the antiparticle going backwards, they are different charges.
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Dirac Field

We saw in Lecture 3 that the spin 1/2 Dirac particle obeys an equation of
motion (iγµ∂µ −m)ψ = 0, and that the solutions are complex, so we should
anticipate that we will need to have a complex field ψ with 4 complex com-
ponents, together with its hermitian conjugate ψ† or equivalently ψ̄ = ψ†γ0.
We see that we need the conjugate, because the action and the Lagrangian
need to be hermitean (in order that eiS/h̄ is unitary). But we see that we can
easily get what we want with

L = ψ̄ (iγµ∂µ −m)ψ,

because ∂L/∂(∂µψ̄) = 0 and ∂L/∂ψ̄ = γ0(iγµ∂µ − m)ψ, so the equations
of motion follow from the Euler-Lagrange approach. We know that there
are solutions u(~k, s)e−ikµxµ

and v(~k, s)eikµxµ

for each 3-momentum ~k and for
s = 1, 2, so we can write the general solutions as

ψ̂ =
∫

d3k

(2π)3
√

2ωk

2
∑

s=1

[

ĉs(~k)u(~k, s)e
−ikµxµ

+ d̂†s(
~k)v(~k, s)eikµxµ

]

,

with k0 = ωk =
√

~k 2 +m2. Quantization will mean the coefficients cs(~k)

and d†s(
~k) will become operators, with u and v remaining ordinary complex

four-component functions.
It is clear that L is invariant under a global phase change of ψ, ψ → e−iαψ,

ψ̄ → ψ̄ → e+iα, so Noether gauarantees us a conserved current

Ĵµψ =
∂L
∂∂µψ̂

δψ̂ = ˆ̄ψγµψ̂, with conserved Q =
∫

d3xψ̂†ψ̂.

On the other hand, the Hamiltonian is

Ĥ =
∫

d3xψ̂†γ0
[

−i~γ · ~∇ +m
]

ψ = i
∫

d3xψ̂† ∂

∂t
ψ.

From the expansions, we have

Q =
∫

d3x
∫ d3k

(2π)3
√

2ωk

2
∑

s=1

[

ĉ†s(
~k)u†(~k, s)eikµxµ

+ d̂s(~k)v
†(~k, s)e−ikµxµ

]

×
∫

d3q

(2π)3
√

2ωq

2
∑

s=1

[

ĉs(~q)u(~q, s)e
−iqµxµ

+ d̂†s(~q)v(~q, s)e
iqµxµ

]
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=
∫

d3k

2ωk(2π)3

2
∑

r,s=1

[

ĉ†r(
~k)ĉs(~k)u

†(~k, r)u(~k, s)

+ĉ†r(
~k)d̂†s(−~k)u†(~k, r)v(−~k, s) + d̂r(~k)ĉs(−~q)v†(~k, r)u(−~q, s)

+d̂r(~k)d̂
†
s(
~k)v†(~k, r)v(~k, s)

]

We will need to use

u†(~k, r)v(−~k, s) = v†(~k, r)u(−~q, s) = 0,

u†(~k, r)u(~k, s) = 2ωkδrs = v†(~k, r)v(~k, s)

so

Q =
∫ d3k

(2π)3

2
∑

s=1

[

ĉ†s(
~k)ĉs(~k) + d̂s(~k)d̂

†
s(
~k)

]

.

The hamiltonian calculation is nearly the same, except the ∂
∂t

brings down a
ω on each c and a −ω on each d†, so

H =
∫

d3k

(2π)3

2
∑

s=1

[

ĉ†s(
~k)ĉs(~k) − d̂s(~k)d̂

†
s(
~k)

]

.

If these had been reversed, we might have argued that we simply goofed by
interchanging the d and d† in the definition of ψ̂, but that would give us a
positive definite charge but an energy which could be infinitely negative. The
escape is to demand that quantization means that the creation and annihi-
lation operators obey anti-commutation relations rather than commutation
ones. So

{

cr(~k), c
†
s(~q)

}

= (2π)3δrsδ
3(~k − ~q) =

{

dr(~k), d
†
s(~q)

}

,

{

cr(~k), cs(~q)
}

=
{

cr(~k), ds(~q)
}

=
{

cr(~k), d
†
s(~q)

}

= 0.

Then, ignoring an infinite constant term, we have

Q =
∫

d3k

(2π)3

2
∑

s=1

[

ĉ†s(
~k)ĉs(~k) − d̂†s(

~k)d̂s(~k)
]

.

and

H =
∫

d3k

(2π)3

2
∑

s=1

[

ĉ†s(
~k)ĉs(~k) + d̂†s(

~k)d̂s(~k)
]

.
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which is much nicer. Now taking the ground state to satisfy

cr(~k) |0〉 = dr(~k) |0〉 = 0

serves as a base for an arbitrary number of positive energy excitations of
particles with positive charge and anti-particles of negative charge (or vice
versa if you want to respect Ben Franklin.) The fields now satisfy equal-time
anticommutation relations as well,

{

ψ̂α(~x, t), ψ̂β(~y, t)
}

= 0,
{

ψ̂α(~x, t), ψ̂
†
β(~y, t)

}

= δ3(~x− ~y)δαβ ,
{

ψ̂†
α(~x, t), ψ̂

†
β(~y, t)

}

= 0.

When we get to including interactions and expanding the exponential of the
action, we will have nothing new from the time-ordered hamiltonian densities,
but in moving the creation and annihilation operators until they annihilate
on 〈0| or |0〉, we will be anti- commuting them through any operators related
to the Dirac fields, or more generally any fermionic operators. One can think
of “classical” fermionic fields as anti-commuting, and the non-zero right hand
side in {ψ̂, ψ̂†} as the quantization. Thus it is natural to define the time-
ordering meta-operator as

T ψ̂(x1)
¯̂
ψ(x2) = Θ(t1 − t2)ψ̂(x1)

¯̂
ψ(x2) − Θ(t2 − t1)

¯̂
ψ(x2)ψ̂(x1).

Note the minus sign.


