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Last time we agreed to do all our quantum mechanics in the interaction
picture, where the states evolve only under the perturbative part Ĥ ′

I of the
hamiltonian Ĥ, while the operators evolve under the unperturbed hamilto-
nian Ĥ0. That is,

i
d

dt
|ψ(t)〉I = Ĥ ′

I |ψ(t)〉I , ÔI(t) = eiĤ0tO(0)e−iĤ0t,

where the last expression holds in particular to define Ĥ ′
I(t). We saw (follow-

ing the book) that if we have a state |ψ(t)〉 which in the distant past (before

the beams collided) was in the state |i〉 = |φ(−∞)〉I ∝ a†(~kA)a†(~kB) |0〉,
it will evolve into the state |φ(+∞)〉I = Ŝ |φ(−∞)〉I in the distant future
(i.e. when it passes through the detectors). Detectors measure an angle and

momentum, so basically they click if the final state is |f〉 ∝
(

∏

f a
†(pf)

)

|0〉.
The amplitude to be in that state is 〈f ||ψ(∞)〉I = 〈f | Ŝ |i〉. And we learned
last time that

Ŝ = T exp
{

−i
∫

d4x ĤI(x)
}

. (1)

1 First Perturbative Calculations

We will be following the book in its presentation of ‘ABC’ theory, but first
I want to clarify that the implication that this removes the problem of φ3 is
wrong.

The ABC theory consists of three distinguishable fields φ̂i, i = A,B,C,
each a real scalar field of mass mi with a Klein-Gordon lagrangian, together
with an interation term −gφ̂Aφ̂Bφ̂C , which means there will be an interaction
hamiltonian

Ĥ ′ = g
∫

d3x φ̂Aφ̂Bφ̂C .

Do not suppose that the mass term of each hamiltonian, +1
2
m2

i φ̂
2
i will protect

us from negative energy states. While for each field with fixed values of the
other two, the energy is bounded from below, the configuration where each
of the fields becomes large and negative still produces states of arbitrary
negative energy. As for φ3 theory, this can be fixed by adding higher order
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terms, say
∑

φ4
i , but we will not worry about this, as we are only interested

in perturbation theory calculations, and our serious work, once we gather
familiarity with the methods of perturbative field theory, will be on other
theories that do not have this problem.

We have so far not discussed the normalization of states, except in the
homework assignment for next week. There you will show that if we want
Lorentz invariant measures, it is best not to use nonrelativistic normalization
〈

~k
∣

∣

∣

∣

∣

∣

~k′
〉

= δ3(~k−~k ′), which implies completeness
∫

d3k
∣

∣

∣

~k
〉 〈

~k
∣

∣

∣ = 1, but rather
to normalize to

〈

~k
∣

∣

∣

∣

∣

∣

~k′
〉

= 2ωk(2π)3δ3(~k −~k ′), with
∫ d3k

(2π)32ωk

∣

∣

∣

~k
〉 〈

~k
∣

∣

∣ = 1I, (2)

where 1I is really only the identity in the one-particle subspace.
A detailed and very thorough treatment of how scattering amplitudes are

related to the matrix elements Sfi is given in Peskin and Schroeder, and I
am not going to go through it here. The result of this discussion is that
scattering is given by

〈~p1, · · · ~pn| Ŝ − 1I
∣

∣

∣

~kA, ~kB

〉

= (2π)4 i δ4



kµ
A + kµ

B −
n

∑

j=1

pµ
j





× M(kA, kB → {pj}) (3)

where M is known as the invariant scattering amplitude. It contains the
dynamical part of the scattering cross section, and is a Lorentz invariant
function. Its square gets multiplied and integrated with a relativistically

invariant n-body phase space factor to give the cross section

dσ =
1

2EA 2EB |~vA − ~vB|





n
∏

f=1

d3pf

(2π)3

1

2Ef





×(2π)4 δ4



kµ
A + kµ

B −
n

∑

j=1

pµ
j



 |M(kA, kB → {pf})|2 . (4)

The invariant amplitude also gives the partial decay width of a particle A at
rest

dΓ =
1

2mA





n
∏

f=1

d3pf

(2π)3

1

2Ef





×(2π)4 δ4



kµ
A −

n
∑

f=1

pµ
f





∣

∣

∣M(mA → {pf})
∣

∣

∣

2
. (5)
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read 158-160

The A(1)
fi of 6.48 is just the lowest order contribution to Ŝ − 1, so from

(3) we have M = −g. For the total decay width, we need to integrate over
the final momenta, so

Γ =
∫

d3pA d
3pB

(2π)6 8MCEAEB

(2π)4δ3(~pA + ~pB)δ(EA + EB −mC)(−g)2

=
g2

8πMC

∫ ∞

0
p2dp

δ(EA + EB −mC)

EAEB

The particles emerge with |~p| the solution to
√

p2 +m2
A +

√

p2 +m2
B = mC ,

which is correctly given in 6.65. Using the general formula
∫

dx g(x) δ(f(x)) =
∑

f(xj)=0

g(xj)

|f ′(xj)|

with g(p) = p2/EAEB, f(p) =
√

p2 +M2
A +

√

p2 +M2
B − mC , so f ′(p) =

p

EA

+
p

EB

, we have

Γ =
g2

8πMC

p2

EAEB

1
p

EA
+ p

EB

=
g2

8πmC

p2

p(EB + EA)
=

g2

8πM2
C

p.

Notice that as Γ is a decay width (in energy) or the rate of decay, which
has units of sec−1 ≡ m−1 ≡ mass (because we have taken c = 1 and h̄ = 1),
g must have dimensions of mass.

Let’s say a few words about dimensional analysis. Because we are tak-
ing c = 1 and h̄ = 1, the only units left can be expressed as powers of
mass. Lengths and times are mass−1, and derivatives with respect to xµ

have dimensions of mass. The arguments of exponentials must always be
dimensionless, so the action must be, and as it is the four-dimensional in-
tegral of the lagrangian density, L must have dimension mass4. Each term
in the Klein-Gordon L = 1

2

[(

∂µφ̂
)

∂µφ̂−m2φ̂2
]

then shows us φ̂ must have

dimension mass1. The Maxwell L = −1
4
F µνFµν tells us Fµν has dimension

mass2, and as F is given by single derivatives of Aν , Aν has dimension mass1

as well.
As we added a term −gφ̂Aφ̂Bφ̂C to the Lagrangian, and as each φ̂ al-

ready has dimension mass1, the constant g must also have dimension mass1,
consistent with what we just argued from the width.
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Note that the covariant derivative Dµ = ∂µ + iqAµ must also have dimen-
sion 1, so the electric charge q is dimensionless. If we put back the relevant
powers of h̄ and c, we can define the dimensionless coupling constant of
electromagnetism, known as the fine structure constant

α =
e2

4πh̄c

in our units, or e2/4πǫ0h̄c in SI units.

1.1 Scattering: A+B → A+B

read 163-???

Let me attack equation 6.74 a bit differently than the book does. First,
let’s undo the trick that let us integrate over all t1 and t2, and write

〈~p ′
A~p

′
B| Ŝ |~pA~pB〉 ≈ (−ig)2

√

16EAE
′
AEBE

′
B

∫∫

t1>t2

d4x1d
4x2 〈0| âA(p′A)âB(p′B)

φ̂A(x1)φ̂B(x1)φ̂C(x1)φ̂A(x2)φ̂B(x2)φ̂C(x2)â
†
A(pA)â†B(pB) |0〉

= (−ig)2
√

16EAE ′
AEBE ′

B

∫∫

t1>t2

d4x1d
4x2

〈0|âA(p′A)φ̂A(x1)φ̂A(x2)â
†
A(pA)|0〉

〈0| âB(p′B)φ̂B(x1)φ̂B(x2)â
†
B(pB) |0〉 〈0| φ̂C(x1)φ̂C(x2) |0〉

The last factor is simple, as the annihilation piece of φ̂C(x2) vanishes acting
on |0〉, and the creation piece of 〈0| φ̂C(x1) vanishes as well, so we have only

〈0| φ̂C(x1)φ̂C(x2) |0〉 =
∫

d3k

(2π)3
√

2ωk

e−ik·x1

∫

d3k′

(2π)3
√

2ωk

eik′·x2 〈0| â(k)â†(k′) |0〉

=
∫

d3k

(2π)32ωk

e−ikµ(x1−x2)µ

.

We will call this D(x1, x2) or D(x1 − x2) when the relevant mass is obvious,
but here we will need to call it D(x1 − x2, mC), because the relevant ωk =
√

~k 2 +m2
C here.

The factors involving A or B fields are somewhat more complicated. In
〈0| âA(p′A)φ̂A(x1)φ̂A(x2)â

†
A(pA) |0〉 we must get one creation operator and one
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annihilation operator from the two φ̂’s, as each creation operator needs to be
contracted with an annihilation piece before it reaches the 〈0|. That is, as
we commute the â†A(pA) to the left, we might pick up the commutator with
one of the φ̂’s, giving us a factor

[φ̂(x), â†A(pA)] =
∫ d3k

(2π)3
√

2ωk

e−ik·x[â(k), â†A(pA)] =
1√

2ωPA

e−ipA·x,

or it could contract with the âA(p′A) giving (2π)3δ3(p′A − pA). In the second
case this would leave 〈0| φ̂A(x1)φ̂A(x2) |0〉 = D(x1 − x2), so this case gives a
contribution (2π)3δ3(p′A −pA)D(x1 −x2) to the particle A factor. Returning
to the first case, we are left with 〈0| â†A(p′A)φ̂A(x′) |0〉 = 1

√

2ωp′
A

eip′
A
·x′

, so

combined we get 1

2

√

ωp′
A

ωpA

eip′
A
·x′−ipA·x. In this case we have both x = x1,

x′ = x2 and vice versa, so the total expression from the A fields is

1

2
√

ωpA
ωp′

A

(

eip′
A
·x1−ipA·x2 + eip′

A
·x2−ipA·x1

)

+ (2π)3δ3(p′A − pA)D(x1 − x2, mA).

Of course the same calculation applies to the B field piece.

Let us change variables, defining yµ = xµ
1 − xµ

2 , so the A piece is

1

2
√

ωpA
ωp′

A

(

eip′
A
·y + e−ipA·y

)

ei(p′
A
−pA)·x2 + (2π)3δ3(p′A − pA)D(y,mA),

the B is

1

2
√

ωpB
ωp′

B

(

eip′
B
·y + e−ipB ·y

)

ei(p′
B
−pB)·x2 + (2π)3δ3(p′B − pB)D(y,mB),

and the C piece is D(y). So all together,

〈~p ′
A~p

′
B| Ŝ |~pA~pB〉 ≈ (−ig)2

∫ ∞

0
d4y

∫ ∞

−∞
d4x2D(y,mC)

×
[

(

eip′
A
·y + e−ipA·y

)

ei(p′
A
−pA)·x2 + 2

√

EAE ′
A(2π)3δ3(p′A−pA)D(y,mA)

]

×
[

(

eip′
B
·y + e−ipB·y

)

ei(p′
B
−pB)·x2 + 2

√

EBE ′
B(2π)3δ3(p′B−pB)D(y,mB)

]
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In multiplying out the []’s, there is one term with no exponentials and
D3(y)δ3(p′A − pA)δ3(p′B − pB), with no x2 dependence and therefore an infi-
nite integral proportional to the volume of space and the infinite time interval
from |i〉 to 〈f |, but with no scattering, as~p ′

A = ~pA and~p ′
B = ~pB. There is also

a piece with D2(y)δ3(p′A − pA) multiplying ei(p′
B
−pB)·x2, which upon integra-

tion gives the other delta, ~p ′
B = ~pB. So the interesting piece has only the one

D(y,mC), and it has a x2 dependence exp [i (p′B − pB + p′A − pA) · x2] which
upon integration gives (2π)4δ (p′B − pB + p′A − pA). So the actual scattering
amplitude is given by

〈~p ′
A~p

′
B| Ŝ |~pA~pB〉 ≈ −g2(2π)4δ (p′B−pB+p′A−pA)

∫

d4yΘ(y0)D(y,mC)

×
[

ei(p′
A

+p′
B

)·y + ei(p′
A
−pB)·y + e−i(pA−p′

B
)·y + e−i(pA+pB)·y

]

Notice that because of the δ4 function, the first and fourth exponentials differ
only in sign, and similarly for the second and third terms. Reversing the sign
of y in the last two terms, we have

〈~p ′
A~p

′
B| Ŝ |~pA~pB〉 ≈ −g2(2π)4δ (p′B−pB+p′A−pA)

×
∫

d4y
[

ei(p′
A

+p′
B

)·y + ei(p′
A
−pB)·y

]

×
[

Θ(y0)D(y,mC) + Θ(−y0)D(−y,mC)
]

.

Recall that, due to the translation invariance of D,

Θ(−y0)D(−y) = Θ(−y0) 〈0| φ̂(−y)φ̂(0) |0〉 = Θ(−y0) 〈0| φ̂(0)φ̂(y) |0〉 ,

and of course Θ(y0)D(y) = Θ(y0) 〈0| φ̂(y)φ̂(0) |0〉 and in both cases the
bracket is time ordered, 〈0|T φ̂(y)φ̂(0) |0〉. Define the Feynman propagator
DF (x1 − x2) := 〈0|T φ̂(x1)φ̂(x2) |0〉 and its Fourier transform as D̃F (qµ) =
∫

d4xeiqµxµ

DF (xµ), and we see that the scattering part

〈~p ′
A~p

′
B| Ŝ |~pA~pB〉 ≈ −g2(2π)4δ (p′B−pB+p′A−pA)

[

D̃F (pA + pB, mC) + D̃F (p′A − pB, mC)
]

.


